Prediction of Storm Surge Height Using Synthesized Typhoons and Artificial Intelligence

Author(s):  
Ho-Sik Eum ◽  
◽  
Jong-Jib Park ◽  
Kwang-Young Jeong ◽  
Young-Min Park
2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Nobuhito Mori ◽  
Nozomi Ariyoshi ◽  
Tomoya Shimura ◽  
Takuya Miyashita ◽  
Junichi Ninomiya

2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Nobuhito Mori ◽  
Nozomi Ariyoshi ◽  
Tomoya Shimura ◽  
Takuya Miyashita ◽  
Junichi Ninomiya

2020 ◽  
Vol 95 (sp1) ◽  
pp. 252
Author(s):  
Hwa-Young Lee ◽  
Yeong-Han Jeong ◽  
Dong-Hwan Kim ◽  
Dong-Seag Kim ◽  
Whan-Hee Cho ◽  
...  

Author(s):  
Sota Nakajo ◽  
Hideyuki Fujiki ◽  
Sooyoul Kim ◽  
Nobuhito Mori

In total 82 tropical cyclones data was used to determine scenarios of translation speed, minimum central pressure and track for risk assessment of storm surge at Tokyo Bay. The numerical simulation of waves and flows was conducted by solving non-linear long wave equations. The maximum surge height shows that the typhoon passing through along northeast directional track is dangerous for Tokyo Bay. This trend confirms the previous risk assessment was reasonable. However, it has been shown that the typhoon passing through along north directional track is also dangerous although the frequency is low. Especially, it is interesting that the typhoon passing through along northwest directional track causes distinctive resurgence and harbor oscillation.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 1007-1021 ◽  
Author(s):  
Job C. M. Dullaart ◽  
Sanne Muis ◽  
Nadia Bloemendaal ◽  
Jeroen C. J. H. Aerts

Abstract This study examines the implications of recent advances in global climate modelling for simulating storm surges. Following the ERA-Interim (0.75° × 0.75°) global climate reanalysis, in 2018 the European Centre for Medium-range Weather Forecasts released its successor, the ERA5 (0.25° × 0.25°) reanalysis. Using the Global Tide and Surge Model, we analyse eight historical storm surge events driven by tropical—and extra-tropical cyclones. For these events we extract wind fields from the two reanalysis datasets and compare these against satellite-based wind field observations from the Advanced SCATterometer. The root mean squared errors in tropical cyclone wind speed reduce by 58% in ERA5, compared to ERA-Interim, indicating that the mean sea-level pressure and corresponding strong 10-m winds in tropical cyclones greatly improved from ERA-Interim to ERA5. For four of the eight historical events we validate the modelled storm surge heights with tide gauge observations. For Hurricane Irma, the modelled surge height increases from 0.88 m with ERA-Interim to 2.68 m with ERA5, compared to an observed surge height of 2.64 m. We also examine how future advances in climate modelling can potentially further improve global storm surge modelling by comparing the results for ERA-Interim and ERA5 against the operational Integrated Forecasting System (0.125° × 0.125°). We find that a further increase in model resolution results in a better representation of the wind fields and associated storm surges, especially for small size tropical cyclones. Overall, our results show that recent advances in global climate modelling have the potential to increase the accuracy of early-warning systems and coastal flood hazard assessments at the global scale.


2020 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Sven Smolders ◽  
Maria João Teles ◽  
Agnès Leroy ◽  
Tatiana Maximova ◽  
Patrick Meire ◽  
...  

There is increasing interest in the use of nature-based approaches for mitigation of storm surges along coasts, deltas, and estuaries. However, very few studies have quantified the effectiveness of storm surge height reduction by a real-existing, estuarine-scale, nature-based, and engineered flood defense system, under specific storm surge conditions. Here, we present data and modelling results from a specific storm surge in the Scheldt estuary (Belgium), where a hybrid flood defense system is implemented, consisting of flood control areas, of which some are restored into tidal marsh ecosystems, by use of culvert constructions that allow daily reduced tidal in- and outflow. We present a hindcast simulation of the storm surge of 6 December 2013, using a TELEMAC-3D model of the Scheldt estuary, and model scenarios showing that the hybrid flood defense system resulted in a storm surge height reduction of up to half a meter in the estuary. An important aspect of the work was the implementation of model formulations for calculating flow through culverts of restored marshes. The latter was validated comparing simulated and measured discharges through a physical scale model of a culvert, and through a real-scale culvert of an existing restored marsh during the storm surge.


2020 ◽  
Vol 162 (2) ◽  
pp. 443-444
Author(s):  
Jung-A Yang ◽  
Sooyoul Kim ◽  
Sangyoung Son ◽  
Nobuhito Mori ◽  
Hajime Mase

The article Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios.


2016 ◽  
Vol 11 (5) ◽  
pp. 964-972 ◽  
Author(s):  
Fuchun Lai ◽  
◽  
Luying Liu ◽  
Haijiang Liu ◽  
◽  
...  

To study wave effects on storm surge, a depth-averaged 2D numerical model based on the Delft3D-FLOW model was utilized to simulate near-shore hydrodynamic responses to Typhoon Khanun. The Delft3D-WAVE model is coupled dynamically with the FLOW model and the enhanced vertical mixing, mass flux and wave set-up were considered as wave-current interaction in the coupled model. After verifying storm surge wind and pressure formulae of storm surge and optimizing calibration parameters, three numerical tests with different control variables were conducted. Model tests show that wave effects must be considered in numerical simulation. Simulating the flow-wave coupled model showed that wave-induced surge height could be as large as 0.4 m in near-shore areas for Typhoon Khanun. Comparing to its contribution to the peak surge height, wave-induced surge plays a more significant role to total surge height with respect to the time-averaged surge height in storm events. Wave-induced surge (wave setup) is in advance of typhoon propagation and becomes significant even before the typhoon landfall. Model tests demonstrate that the wave effects are driven predominantly by the storm wave, while the boundary wave contribution is rather limited.


Author(s):  
Yoko SHIBUTANI ◽  
Sota NAKAJYO ◽  
Sooyoul KIM ◽  
Nobuhito MORI ◽  
Hajime MASE

Sign in / Sign up

Export Citation Format

Share Document