The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures

2014 ◽  
Vol 16 (6) ◽  
pp. 19-25
Author(s):  
Moon Sup Lee ◽  

2012 ◽  
Vol 174-177 ◽  
pp. 82-90 ◽  
Author(s):  
Ju Nan Shen ◽  
Zhao Xing Xie ◽  
Fei Peng Xiao ◽  
Wen Zhong Fan

The objective of this study was to evaluate the effect of nano-sized hydrated lime on the moisture susceptibility of the hot mix asphalt (HMA) mixtures in terms of three methodologies to introduce into the mixtures. The experimental design for this study included the utilizations of one binder source (PG 64-22), three aggregate sources and three different methods introducing the lime. A total of 12 types of HMA mixtures and 72 specimens were fabricated and tested in this study. The performed properties include indirect tensile strength (ITS), tensile strength ratio (TSR), flow, and toughness. The results indicated that the nano-sized lime exhibits better moisture resistance. Introducing process of the nano-sized lime will produce difference in moisture susceptibility.



Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.



2011 ◽  
Vol 255-260 ◽  
pp. 3432-3436
Author(s):  
Xian Yuan Tang ◽  
Jie Xiao

This paper systematically elaborates the impact upon performance of emulsion asphalt cold reclaimed asphalt mixture by different RAP contents, through a series of testing on six cold reclaimed asphalt mixtures with various RAP contents, such as single axle compression test, 15°C indirect tensile strength (ITS) test, 40°C rutting test and -10°C low-temperature bending beam test. Testing results indicate that 15°C ITS decreases from around 0.75 MPa to 0.58 MPa with the RAP content of mixture increasing from 0% to 100%. 40°C dynamic stabilities reduce considerably from around 19,000 time/mm of 0% RAP mixture to 3,600 time/mm of 100% RAP mixture. -10°C failure strains only change from 1500με to 2000με.



2016 ◽  
Vol 28 (11) ◽  
pp. 04016139 ◽  
Author(s):  
Michael Krcmarik ◽  
Sudhir Varma ◽  
M. Emin Kutay ◽  
Anas Jamrah


2012 ◽  
Vol 204-208 ◽  
pp. 3934-3937 ◽  
Author(s):  
Bao Yang Yu ◽  
Yu Wang ◽  
Min Jiang Zhang

The objectives of this paper are to characterize the mechanical properties of porous asphalt pavement mixtures containing RAP and a WMA additive using Super pave gyratory compactor and dynamic modulus testing. Four types of asphalt mixtures were evaluated in this study. This study evaluated compaction energy index, permeability, indirect tensile strength, and dynamic modulus for all types of porous asphalt mixtures. All of the asphalt mixtures meet the typical minimum coefficient of permeability in this study. In addition, only a slight decrease in was found when WMA additive was added to the porous asphalt mixture containing RAP. For indirect tensile strength testing, WMA containing RAP was found to have the highest tensile strength among all of the mixtures tested.



2020 ◽  
Vol 38 (5A) ◽  
pp. 789-800
Author(s):  
Duaa A. Khalaf ◽  
Zaynab I. Qasim ◽  
Karim H. Al Helo

This research investigates the behavior of Stone Matrix Asphalt mixtures (SMA) modified with styrene-butadiene-styrene (SBS) polymer at four percentages (1, 2, 3 and 4%) by weight of asphalt cement. The moisture susceptibility and rutting were taken into consideration in this study. To achieve the objective of this research the superpave system is conducted to design the asphalt mixtures. The physical properties of aggregate, bitumen and other mix materials were assessed and evaluated with the laboratory tests. The mixtures were prepared using penetration Graded (40-50) bitumen and a chemical named Polypropylene Fibers was used as a stabilizing additive. Fibers have been used in SMA mixtures for two main reasons: To increase the toughness and fracture resistance of hot mix asphalt (HMA) and to act as a stabilizer to prevent drain down of the asphalt binder. The laboratory tests include indirect tensile strength test, Marshall stability and retained Marshall Stability test (RMS). For rutting test the Roller wheel compactor is used for preparing the asphaltic samples and Wheel tracking device is used to evaluate the rutting of asphaltic slabs. The results showed that the SBS polymer asphalt mixture gave better moisture sensitivity and better fracture resistance according to the study.It is noted that indirect tensile strength ratio (TSR) increases by 93.1 % and the rut depth decreases by 32.5 % when adding 3% SBS polymer to SMA.



2019 ◽  
Vol 5 (2) ◽  
pp. 320
Author(s):  
Gholam Hossein Hamedi

Several parameters affect asphalt mix performance against loading and environmental conditions. Minor changes in the filler amount or type can cause obvious changes in the asphalt mixture properties. Accordingly, in this research attempts have been made to optimally make asphalt mixture strong against loading and environmental conditions by changing the type, size and percentage of filler used in asphalt mixture. In this line, the effect of two types of cement and nano-silica fillers in two different percentages was investigated and compared as an alternative for part of the main filler in asphalt mixture samples made by two types of limestone and granite aggregate. Cement filler by 2% and 4% of the aggregate mass as the alternative for part of the main filler is added to stone materials before mixing with binder, but nano-silica filler by 2% and4 % of weight of the binder as the alternative for part of the main filler is added to binder and a modified and homogeneous binder is produced using a high speed mixer. In the following, considering the optimum binder content for each mixture, resilient modulus tests were conducted to determine the strength performance against loading and indirect tensile strength ratio was used to determine moisture sensitivity of asphalt mixtures. Results obtained from resilient modulus tests show that the use of nano-silica and cement has been capable of favorably improving the resilient modulus of samples containing these two types of fillers. The improvement of the resilient modulus of samples containing nano-silica is very significant. Additionally, the studies conducted based on the indirect tensile strength ratio show that both types of alternative fillers, especially cement has been capable of desirably improve the strength of asphalt mixtures against moisture damage.





2019 ◽  
Vol 25 (4) ◽  
pp. 18-28
Author(s):  
Sarmad Imad Ibrahim ◽  
Nahedh Mahmud Ali ◽  
Tamara Wahid Abood

In this study, the investigation of Local natural Iraqi rocks kaolin with the addition of different proportions of bauxite and its effect on the physical and mechanical properties of the produced refractories was conducted. Kaolin/bauxite mixture was milled and classified into various size fractions, the kaolin (less than 105 μm) and the bauxite (less than 70μm). The specimens were mixed from kaolin and bauxite in ranges B1 (95+5)%, B2 (90+10)%, B3(85+15)%, and B4 (80+20)%  respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of 7 MPa with the addition of (9-12) %wt. of PVA ratio. After molding and drying, the specimens were fired at (1100, 1200 and 1300) °C. Physical properties (density, porosity, water absorption) and mechanical properties (indirect tensile strength and hardness) were measured for all the prepared samples. The results showed that the porosity was increased and the density was decreased, such increase and decrease affected on to the mechanical properties for refractory. The highest values of indirect tensile strength and hardness were obtained at 20% Bauxite at 1300 °C (0.85386 MPa, 1411Kg / mm²) respectively.  



Sign in / Sign up

Export Citation Format

Share Document