Dust Around the Cool Component of D-Type Symbiotic Binaries, "Письма в Астрономический журнал: Астрономия и космическая астрофизика"

Author(s):  
T. Jurkic ◽  
D. Kotnik-Karuza
2018 ◽  
Vol 44 (4) ◽  
pp. 265-277 ◽  
Author(s):  
Tomislav Jurkic ◽  
Dubravka Kotnik-Karuza

1994 ◽  
Vol 140 ◽  
pp. 152-153
Author(s):  
Sun Kwok

As stars evolve up the asymptotic giant branch (AGB), they begin to lose mass at a high rate, and in the process they create extended circumstellar molecular envelopes. Since the transition from AGB to planetary nebula stages is of the order of 1000 yr, the remnant of such molecular envelopes should still be observable in pro to-planetary nebulae (PPN) and planetary nebulae (PN). Recent ground-based survey of cool IRAS sources have discovered ~30 candidates of PPN (Kwok 1992). These sources show the characteristic “double-peak” energy distribution. The cool component is due to the remnant of the AGB dust envelope, and the hot component represents the reddened photosphere. The fact that the two components are clearly separated suggests that the dust envelope is well detached from the photosphere. Radiative transfer model fits to the spectral energy distributions of PPN suggest a typical separation of ~1 arc sec between the dust envelope and the photosphere, and such “hole-in-the-middle” structure can be mapped by millimeter interferometry in CO.


2006 ◽  
Vol 463 (2) ◽  
pp. 703-706 ◽  
Author(s):  
M. Gromadzki ◽  
J. Mikołajewska ◽  
P. A. Whitelock ◽  
F. Marang
Keyword(s):  

2015 ◽  
Vol 71-72 ◽  
pp. 81-86
Author(s):  
S. Mohamed ◽  
R. Booth ◽  
Ph. Podsiadlowski ◽  
S. Ramstedt ◽  
W. Vlemmings ◽  
...  
Keyword(s):  

2001 ◽  
Vol 326 (2) ◽  
pp. 553-577 ◽  
Author(s):  
J.L. Sokoloski ◽  
Lars Bildsten ◽  
Wynn C. G. Ho

1983 ◽  
Vol 72 ◽  
pp. 55-67
Author(s):  
G.T. Bath ◽  
A.C. Edwards ◽  
V.J. Mantle

Following earlier work of Lynden-Bell & Pringle (1974) and Lightman (1974a, 1974b), Bath & Pringle (1981) have presented a simple method for studying the time-dependent evolution of viscous accretion discs. These models are axisymmetrlc, with the vertical structure reduced to integrated averages of local physical conditions. Published work examines models of dwarf nova eruptions driven by mass transfer bursts (Bath & Pringle 1981 – Paper I), eruptions produced by global viscous changes within the disc (Bath & Pringle 1982a Paper II), and the time-dependent properties of giant discs in symbiotic binaries (Bath & Pringle 1982b – Paper III).


1982 ◽  
Vol 70 ◽  
pp. 231-251
Author(s):  
Mirek J. Plavec

AbstractSymbiotic stars have become an important testing ground of various theories of binary star evolution. Several physically different models can explain them, but in each case certain fairly restrictive conditions must be met, so if we manage to identify a definite object with a model, it will tell us a lot about the structure and evolutionary stage of the stars involved. I envisage at least three models that can give us a symbiotic object: I have called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic).


2012 ◽  
Vol 21 (1-2) ◽  
Author(s):  
A. Skopal

AbstractSymbiotic binaries consist of a few sources of radiation contributing to spectral energy distribution (SED) from hard X-rays to radio wavelengths. To identify the basic physical processes forming the observed spectrum, we have to disentangle the composite SED into its individual components of radiation, i.e., to determine their physical parameters. Spectral disentangling of different objects at different stages of activity allows us to understand the mechanism of their outbursts. In this contribution I demonstrate the method of multiwave-length modeling SEDs on the example of two classical symbiotic stars, AG Dra and Z And.


1988 ◽  
Vol 108 ◽  
pp. 158-166
Author(s):  
Takashi Tsuji

AbstractThe origin of mass-loss in cool luminous stars is still obscure; several known mechanisms such as thermally driven wind, radiation-driven wind(via dust), wave-driven wind etc all have serious difficulties, if examined in the light of recent observations. At the same time, recent observations in the infrared and radio spectral domains revealed that outer envelope of red (super)giant stars has highly complicated spatial and velocity structures, while inner envelope may have new component that had not been recognized before. For example, recent high resolution infrared spectroscopy revealed a possible presence of a quasi-static turbulent molecular dissociation zone somewhere in the outer atmosphere. This new component may represent a transition zone between the warm chromosphere and the huge expanding molecular envelope, and may be a cool component of chromospheric inhomogeneity or a moleclar condensation in a cool corona extended by turbulent pressure. Such a result can be regarded as observational evidence in support of a recent theory of autocatalytic molecular formation by thermal instability due to molecular cooling. Thus, observation and theory consistently show the presence of a new component - quasi-static turbulent molecular formation zone - in outer atmosphere of cool luminous stars, and a possibility of a unified understanding of outer atmospheric structure and mass-loss, in which turbulence may play important role, can be proposed.


Sign in / Sign up

Export Citation Format

Share Document