Biosynthesis of Biologically Active Low-Molecular Weight Compounds by Fungi of the GenusPenicillium(Review)

Author(s):  
A. G. Kozlovskii ◽  
T. V. Antipova ◽  
V. P. Zhelifonova
2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


2020 ◽  
Vol 20 (15) ◽  
pp. 1532-1542 ◽  
Author(s):  
Miroslav Pohanka

Inhibitors of cholinesterases are a wide group of low molecular weight compounds with a significant role in the current pharmacology. Besides the pharmacological importance, they are also known as toxic compounds like military nerve agents. In the pharmacology, drugs for Alzheimer disease, myasthenia gravis and prophylaxis of poisoning by nerve agents can be mentioned as the relevant applications. Besides this, anti-inflammation and antiphrastic drugs are other pharmacological applications of these inhibitors. This review is focused on a survey of cholinesterase inhibitors with known or expected pharmacological impact and indications of their use. Recent literature with comments is provided here as well.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


1994 ◽  
Vol 72 (02) ◽  
pp. 275-280 ◽  
Author(s):  
David Brieger ◽  
Joan Dawes

SummaryIt is widely reported that persistent anti-Xa activity follows administration of low molecular weight heparins. To identify the effectors of this activity we have injected 125I-labelled Enoxaparin sodium into rabbits and subsequently analysed the circulating radiolabelled material and anti-Xa activity by affinity and size exclusion chromatography. Antithrombin III-binding material derived from the injected drug was responsible for all the anti-Xa amidolytic activity. At early times after injection additional anticoagulant activity which was largely attributable to tissue factor pathway inhibitor was measured by the Heptest clotting assay after removal of glycosaminoglycans from plasma samples. Small radiolabelled fragments, including penta/hexasaccharide with affinity for antithrombin III, were detectable in the circulation 1 week later, and sulphated oligosaccharides persisted for 3-4 weeks. Significant quantities of radiolabel remained in the liver and kidney several weeks post-injection; these organs may sequester some of the injected drug and give rise to circulating biologically active material by degradation and secretion of catabolic products into the plasma.


Sign in / Sign up

Export Citation Format

Share Document