scholarly journals OIL SPILL PREVENTION AND TREATMENT IN OFFSHORE OIL INDUSTRY OF CHINA

1989 ◽  
Vol 1989 (1) ◽  
pp. 235-238
Author(s):  
Lu Mu-Zhen

ABSTRACT The China National Offshore Oil Corporation (CNOOC), established in October 1982, is the sole Chinese company dealing with offshore oil exploration, development, and production. It has four regional corporations, and four specialized corporations, as well as seventeen joint venture corporations. CNOOC has four representative offices outside China. Since the Sino-foreign cooperation for offshore oil exploration and development in China started, 360,000 line km of seismic survey have been shot, thirty-nine oil and gas bearing structures have been found, fifteen oil fields have been evaluated as having large hydrocarbon accumulations, nine oil fields have been developed and put into production, 179 exploratory wells have been drilled, and CNOOC has signed thirty-nine contracts with a total of forty-five foreign companies from twelve countries. There are five laws and regulations in the PRC affecting offshore oil development and marine environmental pollution. In accord with these laws and regulations, CNOOC has reviewed four environmental impact statements for offshore oil fields received from its regional corporations. CNOOC has made oil spill contingency plans for the Cheng-Bei offshore oil field in Bo-Hai, and the Wei 10-3 offshore oil field in the Gulf of Bei-Bu. Some oil spill combating equipment is owned by the Bo-Hai Oil Corporation and the Nan-Hai West Oil Corporation, selected on the basis of the crude oil characteristics.

1984 ◽  
Vol 24 (1) ◽  
pp. 118
Author(s):  
Geoffrey Hart

Under the umbrella of a Technical Co-operation Agreement between Australia and China, CSR is managing a project to transfer to the Chinese petroleum industry the equipment and knowledge required for the financial evaluation of large offshore developments by computer modelling.A medium-size interactive computer will be supplied along with a financial evaluation software package. Australian specialists in financial evaluation and modelling, computer management and offshore engineering will visit China to conduct training courses, and twelve Chinese professionals will visit Australia for tertiary studies and work experience.China is coming to the end of the first round of awarding contracts to foreign companies for the exploration of offshore oil fields. Ahead are later stages of bidding and contract negotiation, the evaluation of field development proposals, and the management of joint venture participation in producing fields. The computer equipment and application skills to be supplied under this project will significantly upgrade the capability of the Chinese petroleum industry to manage these future stages.


2021 ◽  
Vol 6 ◽  
pp. 4-17
Author(s):  
Doan Huy Hien ◽  
Hoang Long ◽  
Pham Quy Ngoc

Selecting a proper enhanced oil recovery (EOR) method for a prospective reservoir is a key factor for successful application of EOR techniques. Reservoir engineers usually refer to screening guidelines to identify potential EOR processes for a given reservoir. However, these guidelines are often too general. In this study, we develop an advanced EOR screening technique based on the statistical analyses with boxplot in combination with some initial deep learning analyses to select the most suitable EOR method for a given mature oil field. At first, a database and the screening guidelines were established by compiling the information of 1,098 EOR projects from various publications in different languages, including Oil and Gas Journal (OGJ) biannual EOR surveys, SPE publications, DOE reports, and Chinese publications, etc. Boxplots were used to detect the special cases for each reservoir/fluid property and to present the graphical screening results. A case study was used to demonstrate that with a simple input of reservoir/fluid information, the proposed procedure could effectively give recommendations for EOR method selection. With the inputs (reservoir and fluid properties) from Vietnam offshore oil fields, the EOR methods recommended by this study are mostly chemical, including polymer and surfactant injection.


2021 ◽  
Vol 225 ◽  
pp. 01008
Author(s):  
Oleg Latypov ◽  
Sergey Cherepashkin ◽  
Dina Latypova

Corrosion of equipment in the oil and gas complex is a global problem, as it contributes to huge material costs and global disasters that violate the environment. Corrosion control methods used to protect equipment do not always ensure the absolute safety of the operation of oil and gas facilities. Moreover, they are quite expensive. The developed method for controlling the electrochemical parameters of aqueous solutions to combat complications during the operation of oil-field pipelines provides the necessary protection against corrosion. The method is economical and environmentally friendly, since it does not require the use of chemical reagents. The test results have shown a very high efficiency in dealing with complications in oil fields.


Author(s):  
V.N. Melikhov ◽  
N.A. Krylov ◽  
I.V. Shevchenko ◽  
V.L. Shuster

Regarding the South Caspian oil and gas province, it is concluded that the Pliocene productivity prevails in the western part of the province, and that the gas and oil prospects of the eastern land side in the Mesozoic are prioritized. A retrospective analytical review of geological and geophysical data and publications on the Mesozoic of Southwestern Turkmenistan was carried out, which showed the low efficiency of the performed seismic and drilling operations in the exploration and evaluation of very complex Mesozoic objects. A massive resumption of state-of-the-art seismic exploration and appraisal drilling in priority areas and facilities performed by leading Russian companies is proposed. For some areas, a new, increased estimate of the projected gas resources is given. An example of modern high-efficiency additional exploration of the East Cheleken, a small Pliocene gas and oil field, which turned this field into a large one in terms of reserves, is given.


2020 ◽  
Vol 4 (2) ◽  
pp. 127
Author(s):  
Paulin Yosephin Marini ◽  
Sherlly Monica Bonsapia ◽  
Johni R.V. Korwa

<p><em>This study aims to analyze a blowout from an oil and gas leak owned by PTT Exploration and Production (PTTEP) Australasia in the Montara oil field in the Indonesian Timor Sea, and how to resolve disputes between Australia and Indonesia. A qualitative approach was used in this study, whilst the data collection technique was through library research. The theory of state responsibility, the concept of human security, and the concept of international maritime law are used to analyze disputes between Indonesia and Australia. The study found that the Montara oil spill had not only damaged the marine ecosystem but also polluted Indonesian waters. It also found that although the Australian government had formed a special commission to resolve cases and even used dispersant, it had not satisfied all parties. Several points are summarized. First, the Montara oil spill in Australia is a transnational study because the impact has crossed national borders. Secondly, UNCLOS has a weakness in the settlement of the Montara case because the Convention only provides a description related to ‘Responsibility of Each Country’ and does not specifically arrange material compensation mechanisms to countries that cause sea pollution. Third, the Montara oil spill has caused huge losses for Indonesian seaweed farmers, especially 13 districts in NTT. The recommendations are that the Indonesian government along with the Montara Victim Peoples’ Advocacy Team should continue to follow up the case of oil spills from the Montara platform and continue to fight for compensation to the Australian government and the PTTEP as the responsible party.</em></p>


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhigang Lan

Focused on the utilization of nuclear energy in offshore oil fields, the correspondence between various hazards caused by blowout accidents (including associated, secondary, and derivative hazards) and the initiating events that may lead to accidents of offshore floating nuclear power plant (OFNPP) is established. The risk source, risk characteristics, risk evolution, and risk action mode of blowout accidents in offshore oil fields are summarized and analyzed. The impacts of blowout accident in offshore oil field on OFNPP are comprehensively analyzed, including injection combustion and spilled oil combustion induced by well blowout, drifting and explosion of deflagration vapor clouds formed by well blowouts, seawater pollution caused by blowout oil spills, the toxic gas cloud caused by well blowout, and the impact of mobile fire source formed by a burning oil spill on OFNPP at sea. The preliminary analysis methods and corresponding procedures are established for the impact of blowout accidents on offshore floating nuclear power plants in offshore oil fields, and a calculation example is given in order to further illustrate the methods.


1989 ◽  
Vol 29 (1) ◽  
pp. 84
Author(s):  
R.P. Warren

A proposal to undertake exploration in the coastal waters adjacent to Sydney/Newcastle/Wollongong has brought strong protests on environmental grounds. This opposition is committed and the basis for it should be considered in the wider context of offshore exploration around Australia. Of the various activities involved in oil and gas exploration the potential impacts of marine seismic surveys and the likelihood of a blowout- related oil spill are those of greatest concern to the media and public.A review of the available literature shows the environmental effects of seismic surveys to be of little consequence provided non- explosive energy sources are used. The effects of an oil spill are heavily dependent on site conditions and the type of oil spilled.The literature shows that direct exposure to spilled oil is fatal to many marine species. However, the potential lethal effects are largely dependent on direct exposure and this declines with the weathering and degradation of the spill. Moreover, the risks of an oil spill occurring as a result of current transportation and handling of oil in coastal waters and points around Australia are much greater than would be presented by drilling an exploratory well.In considering the role of exploration as an assessment procedure rather than a land use it is possible to draw parallels between the conservation status of Australian coastal waters today and the onshore situation some 20 years ago. The offshore oil and gas exploration industry needs to take several measures if it is to avoid denial of access for exploration. These include clearly identifying the environmental effects of exploration as opposed to production, adopting industry- wide codes for environmental practice, and recording and disseminating the industry's environmental performance.


1973 ◽  
Vol 13 (1) ◽  
pp. 166
Author(s):  
M. A. Stratton

The discovery by the partnership of Esso Exploration and Production Australia Inc. and Hematite Petroleum Pty Ltd during the past eight years of the natural gas and crude oil fields off the east Victorian coast has often been compared to that of gold in the State in the 1850's in its impact .on the economic, industrial and social life of the community.To date the amount spent in the State on the discovery and overall development of these fields is approximately $600 million. The value of oil and gas recovered over the period of nearly four years since production commenced in 1969 and distributed and utilised by various means to 31 December 1972, amounts to about $500 million. In addition the value of refined products from Victoria's three refineries and items produced by industrial processes through the use of natural gas and petroleum products as fuels, amount to many more millions of dollars. The total impact on Victoria in one form or another could, if measured in monetary value, he equivalent to about $1200 million-all in the course of about eight years.Other States have also benefited. The building of tankers, barges, tugs and work boats and the modification of refineries in New South Wales and Queensland, have probably cost in the region of $200 million whilst indirectly the success of the Gippsland oil and gas discoveries has spurred other explorers to step up the search in many areas and, as far as natural gas is concerned, with considerable success.The speed and efficiency with which the four gas and oil fields developed to date were brought into production, the necessary treatment plants erected, the pipelines laid and distribution facilities organised; and with which the gas industry changed over to the new fuel and refineries modified their processes to use indigenous crudes have, by world standards, been exceptional. From the time the first gas field-Barracouta, was found in February 1965 until the last oil field in the program -Kingfish came fully on stream late in 1971, less than seven years elapsed.During that time Victorian fuel patterns underwent vast changes. Today over 95% of all gas consumers are using natural gas and about 70% of crude processed by local refineries comes from the Gippsland Basin. The significance of natural gas in particular is demonstrated by a 41% increase in gas sales in Victoria in 1971/72 over the previous twelve months and this trend is expected to accelerate as a result of recent arrangements for the supply of large volumes of this fuel to industrial plants including paper mills, cement works and an alumina smelter.Also of major significance to the State has been the development of the port of Western Port where the loading of tankers and LPG carriers has resulted in it becoming the State's second busiest port. Of less immediate impact but still of great value in the long term, has been the building of better roads and facilities needed to service the installations and the emergence of many valuable skills in the petroleum industry which will make easier the task of future development of new fields and facilities in Victoria and other parts of Australia.


1987 ◽  
Vol 1987 (1) ◽  
pp. 625A-625A
Author(s):  
William J. Lehr ◽  
Robin W. Lardner ◽  
Robert J. Fraga
Keyword(s):  

2014 ◽  
Vol 2014 (1) ◽  
pp. 26-30
Author(s):  
Patricia Maggi ◽  
Cláudia do Rosário Vaz Morgado ◽  
João Carlos Nóbrega de Almeida

ABSTRACT Brazil has performed an important role in the oil and gas industry mainly because its offshore E&P activities. The volume of oil produced in offshore fields had increased 88% in the last decade and correspond to more than 90% of national production. The maritime Exploration and Production (E&P) operations in Brazil started in the middle of the 1970's. In 1981 a law was promulgated to establish a compulsory environmental permit to many activities, including oil and gas exploration and production activities. Although this regulation has existed for over 25 years, only in 1999 was it effectively brought into force to the E&P sector, with the creation of the oil and gas specialized office integrated to the Intituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis – IBAMA (Brazilian Federal Environmental Agency). On January 2000 Brazil faced one its worst oil spills, in Guanabara Bay. A broken pipeline owned and operated by Petrobras spilt 1300 tone of bunker fuel into Guanabara Bay, Rio de Janeiro. At that time, Brazil had no clear environmental scenario regarding the oil industry in Brazil: uncoordinated environmental regulations, debilitated environmental agencies and a relapse industry took part in the scenario. As a result of the repercussion of the disaster, in the same year was enacted the Federal Law 9966/2000, the so called “Oil Law”, on the prevention, control and inspection of pollution caused by the releasing of oil and other harmful substances in waters under national jurisdiction. The provisions of the Law 9966 included, among other things, the requirement for the notification to the competent environmental authority, the maritime authority and the oil regulating agency, of any incident which might cause water pollution. Although IBAMA receives the oil spill communications since 2001, only in 2010 the Agency began to include this information in a database. This paper discusses the offshore oil spill data received between 2010 and 2012.


Sign in / Sign up

Export Citation Format

Share Document