ENHANCEMENT OF SPILLED OIL BIODEGRADATION BY NUTRIENTS OF NATURAL ORIGIN

1993 ◽  
Vol 1993 (1) ◽  
pp. 495-501 ◽  
Author(s):  
Anne Basseres ◽  
Patrick Eyraud ◽  
Alain Ladousse ◽  
Bernard Tramier

ABSTRACT Ten years ago, Elf Aquitaine began developing the technologies for the acceleration of hydrocarbon biodegradation. The continuation of this work has involved the study of new additives to complement the oleophilic nutrient, INIPOL EAP 22. In particular, it has been shown in both laboratory and in situ tests that hydrocarbon degradation can be accelerated by animal meals, which are natural products. Preliminary laboratory studies carried out under batch conditions, have shown that the use of these products has resulted in considerable growth of the bacteria, coupled with a notable increase in the biological degradation kinetics of the hydrocarbons. These results are comparable with the performance of the nutrient INIPOL EAP 22. In situ experiments undertaken on soils polluted by hydrocarbons have shown that by using animal meals, 50 percent biodegradation was obtained after six weeks and this increased to 80 percent when mechanical aeration was also employed. Under nutrient-free control conditions, 25 percent biodegradation was obtained with no aeration and 35 percent with mechanical aeration. In trials using coastal sandy sediments, the use of these nutrients has resulted in an increase of both the number of hydrocarbon specific bacteria and the hydrocarbon degradation. It can be concluded from these pilot experiments that in the development of bioremediation as an operational tool in the response to accidental oil spills, these nutrients of natural origin represent an interesting advance.

1995 ◽  
Vol 1995 (1) ◽  
pp. 995-997
Author(s):  
Anne Basseres ◽  
Bernard Tramier

ABSTRACT Some products have been proposed which will reduce the adhesion of oil to rocks, and thus diminish the impact of oil spills on shorelines. The products are natural, biodegradable materials (polysaccharides). Experiments conducted in a simulated tidal zone resulted in a 20% to 30% decrease in the adhesion of oil compared with control tests. The products retained their effectiveness for six days after application. In situ tests also showed significant results.


1990 ◽  
Vol 212 ◽  
Author(s):  
B. H. Kjartanson ◽  
M. N. Gray ◽  
B.C.M. Pulles

ABSTRACTAECL Research is carrying out large-scale in situ experiments at its Underground Research Laboratory (URL). The Buffer/Container Experiment is designed principally to investigate the full scale, in situ performance of bentonite-based buffer material in a single emplacement borehole environment. In addition, the response of the rock to excavation and heating will be investigated. The experiment also allows for the development of the technologies needed to demonstrate some of the vault engineering activities proposed in the Canadian nuclear fuel waste disposal concept. These include excavation of large diameter boreholes for waste emplacement and in situ compaction of a bentonite/sand buffer mixture. Although these methodologies developed for the URL have not been optimized for the commercial, full-scale operations needed for a disposal vault, results show that the equipment and methodologies needed for vault operations are a reasonable extrapolation of existing technology.


Author(s):  
Sean M. C. Murphy ◽  
María A. Bautista ◽  
Margaret A. Cramm ◽  
Casey R. J. Hubert

Oil spills in the subarctic marine environment off the coast of Labrador, Canada, are increasingly likely due to potential oil production and increases in ship traffic in the region. To understand the microbiome response and how nutrient biostimulation promotes biodegradation of oil spills in this cold marine setting, marine sediment microcosms amended with diesel or crude oil were incubated at in situ temperature (4°C) for several weeks. Sequencing of 16S rRNA genes following these spill simulations revealed decreased microbial diversity and enrichment of putative hydrocarbonoclastic bacteria that differed by petroleum product. Metagenomic sequencing revealed Paraperlucidibaca and Cycloclasticus harbour previously unrecognized capabilities for alkane biodegradation. Genomic and amplicon sequencing together suggest that Oleispira and Thalassolituus degraded alkanes from diesel, while Zhongshania and the novel PGZG01 lineage contributed to crude oil alkane biodegradation. Greater losses in PAHs from crude oil than from diesel were consistent with Marinobacter , Pseudomonas _ D and Amphritea genomes exhibiting aromatic hydrocarbon biodegradation potential. Biostimulation with nitrogen and phosphorus (4.67 mM NH 4 Cl; 1.47 mM KH 2 PO 4 ) was effective at enhancing n -alkane and PAH degradation following low concentration (0.1% v/v) diesel and crude oil amendments, while at higher concentrations (1% v/v) only n -alkanes in diesel were consumed, suggesting toxicity induced by compounds in unrefined crude oil. Biostimulation allowed for a more rapid turnover in the microbial community in response to petroleum amendments, more than doubling the rates of CO 2 increase during the first few weeks of incubation. Importance Increases in transportation of diesel and crude oil in the Labrador Sea will pose a significant threat to remote benthic and shoreline environments, where coastal communities and wildlife are particularly vulnerable to oil spill contaminants. Whereas marine microbiology has not been incorporated into environmental assessments in the Labrador Sea, there is a growing demand for microbial biodiversity evaluations given the pronounced impact of climate change in this region. Benthic microbial communities are important to consider given that a fraction of spilled oil typically sinks such that its biodegradation occurs at the seafloor, where novel taxa with previously unrecognized potential to degrade hydrocarbons were discovered in this work. Understanding how cold-adapted microbiomes catalyze hydrocarbon degradation at low in situ temperature is crucial in the Labrador Sea, which remains relatively cold throughout the year.


2021 ◽  
Author(s):  
Diana Avadanii ◽  
Lars Hansen ◽  
Ed Darnbrough ◽  
Katharina Marquardt ◽  
David Armstrong ◽  
...  

<p>The mechanics of olivine deformation play a key role in large-scale, long-term planetary processes, such as the response of the lithosphere to tectonic loading or the response of the solid Earth to tidal forces, and in short-term processes, such as the evolution of roughness on oceanic fault surfaces or postseismic creep within the upper mantle. Many previous studies have emphasized the importance of grain-size effects in the deformation of olivine. However, most of our understanding of the role of grain boundaries in deformation of olivine is inferred from comparison of experiments on single crystals to experiments on polycrystalline samples.</p><p>To directly observe and quantify the mechanical properties of olivine grain boundaries, we use high-precision mechanical testing of synthetic forsterite bicrystals with well characterised interfaces. We conduct nanoindentation tests at room temperature on low-angle (13<sup>o</sup> tilt about [100] on (015)) and high-angle (60<sup>o</sup> tilt about [100] on (011)) grain boundaries. We observe that plasticity is easier to initiate if the grain boundary is within the volume tested. This observation agrees with the interpretation that certain grain-boundary configurations can act as sites for initiating microplasticity.</p><p>As part of continuing efforts, we are also conducting in-situ micropillar compression tests at high-temperature (above 600<sup>o</sup> C) within similar bicrystals. In these experiments, the boundary is contained within the micropillar and oriented at 45<sup>o</sup> to the loading direction to promote shear along the boundary. In these in-situ tests, our hypothesis is that the low-angle grain boundary displays a higher viscosity relative to the high-angle interface. Key advantages of performing in-situ experiments are the direct observation of grain-boundary migration or sliding, simplified kinematics of a single boundary segment, and  potentially changes in style of deformation with different grain-boundary character.</p><p>These small deformation volume experiments allow us to qualitatively explore the differences between the crystal interior and regions containing grain boundaries. Overall, the variation in strain and temperature in our small scale experiments allows the fundamental investigation of the response of well characterised forsterite grain boundaries to deformation. </p>


1999 ◽  
Vol 46 (1) ◽  
pp. 38-49 ◽  
Author(s):  
T M April ◽  
J M Foght ◽  
R S Currah

Sixty-four species of filamentous fungi from five flare pits in northern and western Canada were tested for their ability to degrade crude oil using gas chromatographic analysis of residual hydrocarbons following incubation. Nine isolates were tested further using radiorespirometry to determine the extent of mineralization of model radiolabelled aliphatic and aromatic hydrocarbons dissolved in crude oil. Hydrocarbon biodegradation capability was observed in species representing six orders of the Ascomycota. Gas chromatography indicated that species capable of hydrocarbon degradation attacked compounds within the aliphatic fraction of crude oil, n-C12- n-C26; degradation of compounds within the aromatic fraction was not observed. Radiorespirometry, using n-[1-14C]hexadecane and [9-14C]phenanthrene, confirmed the gas chromatographic results and verified that aliphatic compounds were being mineralized, not simply transformed to intermediate metabolites. This study shows that filamentous fungi may play an integral role in the in situ biodegradation of aliphatic pollutants in flare pit soils.Key words: bioremediation, filamentous fungi, flare pits, hydrocarbon degradation, petroleum.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


Author(s):  
D.M. Seyedi ◽  
C. Plúa ◽  
M. Vitel ◽  
G. Armand ◽  
J. Rutqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document