Physicochemical Properties of Resistant Starch Prepared from Singil Rice Starch

2018 ◽  
Vol 34 (6) ◽  
pp. 626-634 ◽  
Author(s):  
Chae Eun Lee ◽  
Junhee No ◽  
Malshick Shin
2018 ◽  
Vol 8 (5) ◽  
pp. 78-84
Author(s):  
Uyen Tran Thi Ngoc ◽  
Nam Nguyen Khac ◽  
Dung Tran Huu

Background: The purpose of the study was to prepare acetylated wheat starches which have amylase hydrolysis resistant capacity to use as functional food supporting for diabetes treatment. Method: Acetate wheat starches were prepared by acetylation reaction of native wheat starch with different mole ratios of acetic anhydride. These starches were determined for the physicochemical properties by 1H-NMR, SEM, X-ray, DSC, solubility and swelling capacity, the resistant capacity by amylase hydrolysis in-vitro. Results: Acetate wheat starches were prepared successfully with the increase in acetyl content and degree of substitution corresponding with the increase of anhydride acetic, which resulted in the change of physicochemical properties of the wheat starches, including constitution, solubility, swelling capacity and contributed to the increase in resistant starch content in the acetate wheat starches. The AC150-9 containing 2.42% acetyl with degree of substitution 0,094 and resistant starch 32,11% is acceptable by FDA guideline about food safety. Conclusion: Acetate wheat starches contain low rate of digestive starch, while containing a higher proportion of resistant starch than natural wheat starch, possessing a high resistance to amylase activities. Thus, it is hope that this kind of starch to control the rapid increase of postprandual blood glucose response for diabetes treatments effectively. Key words: Acetate wheat starch, substitution, DS, RS, amylase


2021 ◽  
Vol 99 ◽  
pp. 103183
Author(s):  
Zekun Xu ◽  
Yijuan Xu ◽  
Xiaojing Chen ◽  
Lin Zhang ◽  
Haitao Li ◽  
...  

2021 ◽  
Vol 335 ◽  
pp. 127666 ◽  
Author(s):  
Yuxue Zheng ◽  
Jinhu Tian ◽  
Xiangli Kong ◽  
Dan Wu ◽  
Shiguo Chen ◽  
...  

2014 ◽  
Vol 50 (3) ◽  
pp. 744-749 ◽  
Author(s):  
Wenping Ding ◽  
Yuehui Wang ◽  
Wei Zhang ◽  
Yongcheng Shi ◽  
Donghai Wang

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2419
Author(s):  
Yuheng Zhai ◽  
Jiali Xing ◽  
Xiaohu Luo ◽  
Hao Zhang ◽  
Kai Yang ◽  
...  

In this study, the effects of the addition of pectin (PEC) on the physicochemical properties and freeze-thaw stability of waxy rice starch (WRS) were investigated. As PEC content increased, the pasting viscosity and pasting temperature of WRS significantly increased (p < 0.05), whereas its breakdown value and setback value decreased. Differential scanning calorimetry showed that the addition of PEC increased the gelatinization temperature of WRS, but decreased its gelatinization enthalpy. Rheological measurements indicated that the addition of PEC did not change the shear-thinning behavior of WRS–PEC blends, and the storage modulus and loss modulus were positively correlated with PEC content. Moreover, the textural parameter of WRS decreased with the increase in PEC content. Furthermore, the addition of PEC decreased the transmittance of starch paste, but enhanced the freeze-thaw stability of WRS to some extent. These results may contribute to the development of WRS-based food products.


Sign in / Sign up

Export Citation Format

Share Document