PREPARATION AND CHARACTERISATION OF ACETYLATED WHEAT STARCH SUPPORTING FOR DIABETES TREATMENT

2018 ◽  
Vol 8 (5) ◽  
pp. 78-84
Author(s):  
Uyen Tran Thi Ngoc ◽  
Nam Nguyen Khac ◽  
Dung Tran Huu

Background: The purpose of the study was to prepare acetylated wheat starches which have amylase hydrolysis resistant capacity to use as functional food supporting for diabetes treatment. Method: Acetate wheat starches were prepared by acetylation reaction of native wheat starch with different mole ratios of acetic anhydride. These starches were determined for the physicochemical properties by 1H-NMR, SEM, X-ray, DSC, solubility and swelling capacity, the resistant capacity by amylase hydrolysis in-vitro. Results: Acetate wheat starches were prepared successfully with the increase in acetyl content and degree of substitution corresponding with the increase of anhydride acetic, which resulted in the change of physicochemical properties of the wheat starches, including constitution, solubility, swelling capacity and contributed to the increase in resistant starch content in the acetate wheat starches. The AC150-9 containing 2.42% acetyl with degree of substitution 0,094 and resistant starch 32,11% is acceptable by FDA guideline about food safety. Conclusion: Acetate wheat starches contain low rate of digestive starch, while containing a higher proportion of resistant starch than natural wheat starch, possessing a high resistance to amylase activities. Thus, it is hope that this kind of starch to control the rapid increase of postprandual blood glucose response for diabetes treatments effectively. Key words: Acetate wheat starch, substitution, DS, RS, amylase

2018 ◽  
Vol 8 (5) ◽  
pp. 78-84
Author(s):  
Thi Ngoc Uyen Tran ◽  
Khac Nam Nguyen ◽  
Huu Dung Tran

Background: The purpose of the study was to prepare acetylated wheat starches which have amylase hydrolysis resistant capacity to use as functional food supporting for diabetes treatment. Method: Acetate wheat starches were prepared by acetylation reaction of native wheat starch with different mole ratios of acetic anhydride. These starches were determined for the physicochemical properties by 1H-NMR, SEM, X-ray, DSC, solubility and swelling capacity, the resistant capacity by amylase hydrolysis in-vitro. Results: Acetate wheat starches were prepared successfully with the increase in acetyl content and degree of substitution corresponding with the increase of anhydride acetic, which resulted in the change of physicochemical properties of the wheat starches, including constitution, solubility, swelling capacity and contributed to the increase in resistant starch content in the acetate wheat starches. The AC150-9 containing 2.42% acetyl with degree of substitution 0,094 and resistant starch 32,11% is acceptable by FDA guideline about food safety. Conclusion: Acetate wheat starches contain low rate of digestive starch, while containing a higher proportion of resistant starch than natural wheat starch, possessing a high resistance to amylase activities. Thus, it is hope that this kind of starch to control the rapid increase of postprandual blood glucose response for diabetes treatments effectively. Key words: Acetate wheat starch, substitution, DS, RS, amylase


2018 ◽  
Vol 8 (5) ◽  
pp. 78-84
Author(s):  
Uyen Tran Thi Ngoc ◽  
Nam Nguyen Khac ◽  
Dung Tran Huu

Background: The purpose of the study was to prepare acetylated wheat starches which have amylase hydrolysis resistant capacity to use as functional food supporting for diabetes treatment. Method: Acetate wheat starches were prepared by acetylation reaction of native wheat starch with different mole ratios of acetic anhydride. These starches were determined for the physicochemical properties by 1H-NMR, SEM, X-ray, DSC, solubility and swelling capacity, the resistant capacity by amylase hydrolysis in-vitro. Results: Acetate wheat starches were prepared successfully with the increase in acetyl content and degree of substitution corresponding with the increase of anhydride acetic, which resulted in the change of physicochemical properties of the wheat starches, including constitution, solubility, swelling capacity and contributed to the increase in resistant starch content in the acetate wheat starches. The AC150-9 containing 2.42% acetyl with degree of substitution 0,094 and resistant starch 32,11% is acceptable by FDA guideline about food safety. Conclusion: Acetate wheat starches contain low rate of digestive starch, while containing a higher proportion of resistant starch than natural wheat starch, possessing a high resistance to amylase activities. Thus, it is hope that this kind of starch to control the rapid increase of postprandual blood glucose response for diabetes treatments effectively. Key words: Acetate wheat starch, substitution, DS, RS, amylase


2012 ◽  
Vol 30 (No. 1) ◽  
pp. 9-14 ◽  
Author(s):  
M. Wronkowska ◽  
M. Soral-śmietana

The capability was studied of the selected Bifidobacterium strains to utilise the resistant starch fraction (RS) from native starches of the following origin: wheat, potato, and pea, and their preparations obtained experimentally by physical and enzymatical modifications. Furthermore, the potential influence of the gelatinisation process on the degree of utilisation of RS from the investigated starch samples was studied. The following strains: B. pseudolongum KSI9, B. animalis KS20a1, and B. breve KN14, were chosen. The native starches and their preparations were characterised by their different contents of the RS fraction, which was metabolised during in vitro fermentation for Bifidobacterium growth. The highest decrease in the RS content was observed in the case of native potato and pea starches after 24-h fermentation by Bifidobacterium strains. The RS fraction of the wheat starch preparation was generally a better substrate for the selected bacteria (19–34%) in comparison with the native wheat starch (0–13%). The gelatinisation process of the native starches and their preparations had a negligible effect on the RS fraction utilised as a substrate for stimulating the growth of the Bifidobacterium strains selected.  


2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Luis Eduardo Garcia-Amezquita ◽  
Viridiana Tejada-Ortigoza ◽  
Osvaldo H. Campanella ◽  
Jorge Welti-Chanes

Dietary fibre concentrates (DFC) obtained from fruit and vegetable by-products are powders, mainly obtained by dehydration, used in food formulations to increase nutritional value and to improve functional properties. The modifications of insoluble, soluble, and total dietary fibres (IDF, SDF, and TDF), physicochemical properties (solubility, swelling capacity, water/oil retention capacity, pH, and tapping density), and prebiotic potential of DFC from orange, mango, and prickly pear peels obtained by freeze-drying (FD) and convective hot air-drying (HA) were studied. In vitro faecal fermentation was used to evaluate the short-chain fatty acid (SCFA) production as a prebiotic indicator. TDF in FD orange was 5.5 g·100 g−1 higher than that in the HA sample, whereas HA increased TDF in prickly pear (9.5 g·100 g−1). No differences in fibre composition were observed in mango DFC. The physicochemical properties mostly affected by dehydration treatment were solubility and swelling capacity. HA increased SCFA production in orange peel (48 mmol·g−1 higher) but decreased it in mango and prickly pear (15 and 19 mmol·g−1 lower). Butyrate production of HA orange DFC was comparable to that obtained with the positive control (4.5 mmol·g−1). No production of propionate or butyrate was observed after 6 h fermentation in mango samples, despite the high SDF content (≈20 g·100 g−1). A decrease of the SDF : TDF ratio produced by the drying method improved the SCFA production.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 175 ◽  
Author(s):  
D. Dan Ramdath ◽  
Zhan-Hui Lu ◽  
Padma L. Maharaj ◽  
Jordan Winberg ◽  
Yolanda Brummer ◽  
...  

Proximate composition and starch nutritional properties of twenty cooked lentils were assessed to identify unique varieties that could be used in value added foods. Significant variations exist among the lentil varieties (p < 0.05) with respect to their energy, fat, protein, carbohydrate, and dietary fiber content, and these are related to lentil type and seed size. Dazil and Greenstar were unique for their high resistant starch content (RS) and lower area under the starch hydrolysis curve (SHAUC) while Proclaim was opposite. SHAUC was positively correlated (p < 0.001) with rapidly digestible starch (RDS) content (r = 0.626) but negatively correlated with RS content (r = −0.635). Principal component analysis showed that the first three principal components accounted for 62.8% of the total variance and the contribution of SHAUC was 33.2%. These results confirm that in vitro SHAUC and a combination of RDS and RS may be predictive of the digestibility profile of cooked lentils.


2011 ◽  
Vol 2 (1-3) ◽  
pp. 37-42 ◽  
Author(s):  
Alfonso Martín Bernabé ◽  
Khongsak Srikaeo ◽  
Marina Schlüter

Sign in / Sign up

Export Citation Format

Share Document