scholarly journals Biological Applications of Isoniazid Derived Schiff Base Complexes: An Overview

Author(s):  
Ashrafuzzaman . ◽  
Ekhlass Uddin ◽  
Raisul Islam ◽  
Nur Amin Bitu ◽  
Saddam Hossain ◽  
...  

Antibiotic resistance has been growing at an alarming rate and consequently the activity of antibiotics against Gram-negative and Gram-positive bacteria has dropped dramatically day by day. In this sense there is a strong need to synthesis new substances that not only have good field of activity, but having new appliances of action. Inorganic compounds particularly metal complexes have played a significant role in the development of new metal based drugs. Like few compounds, isonicotinic acid hydrazide (Isoniazid INH) is well known as first-line anti-tuberculosis (TB) drug to treat TB infection worldwide for more than 60 years. Unfortunately, people are only dependent on this drug and consequently, the rate of use of this drug has been increasing day by day. As the bacterial strains resistant to isoniazid are getting same for the long-term extensive use and even abuse so there is an urgent need to synthesis new drugs not only for anti-tuberculosis properties but also for having significant activity in various biological areas with mechanisms of action. Isoniazid derivatives and their metal complexes, particularly medicinal inorganic metal complexes have been considered as new drugs for their antimicrobial activities like anti-bacterial, anti-fungal, anti-tuberculosis, DNA binding, antioxidant, cytotoxic, scavenging and antiviral activities. In this review, we have focused on the various synthesized metal complexes of isoniazid and its hydrazones and have compared their biological activities which are more or less strong against microorganisms. It is found that INH has moderate to strong antimicrobial activity.

2019 ◽  
Vol 1 ◽  
pp. 202-208
Author(s):  
S A Agbese ◽  
G A Shallangwa ◽  
S O Idris

The Schiff base was synthesized by condensing 4-aminopyridine with 4-hydroxypropiophenone. The synthesized ligand was characterized by proton and carbon-13 NMR spectroscopy, electronic spectroscopy and FTIR.The result of the FTIR showed the presence of a band at 1643.41cm-1 assigned to the azomethine bond, also the result of the 1HNMR and 13CNMR gave credence to the successful synthesis of the Schiff base. The Mn(II) and Zn(II) complexes were characterized by UV-visible analysis, FTIR, molar conductivity measurement and magnetic susceptibility test. The results of the FTIR suggest that the metal complexes possess coordinated water molecules and the shift in the wavenumber of the azomethine linkage in the spectra of the complexes shows that the nitrogen of the imine bond participated in the coordination to the metal centre. The magnetic susceptibility measurement shows that the metal complexes possess octahedral geometry. The molar conductivity test shows that the complexes are nonelectrolytic in nature and the metal to ligand ratio is 1:2. The synthesized ligand and the metal complexes were evaluated for biological activities against some organisms. The Zn(II) complex showed significant activity against the test organisms.


2006 ◽  
Vol 71 (7) ◽  
pp. 733-744 ◽  
Author(s):  
R. Nair ◽  
A. Shah ◽  
S. Baluja ◽  
S. Chanda

Two Schiff bases were synthesized from raceacetophenone: 1) ADS1 4-ethyl-6-{(E)-1-[(3-nitrophenyl)imino]ethyl}benzene-1,3-diol and 2) ADS3 4-ethyl-6-[(E)-1-{(2-nitrophenyl)imino]ethyl}benzene-1,3-diol. Then their metal complexes were formed. The metals selected for the preparation of complexes were copper, nickel, iron and zinc. Hence, in total 8 metal complexes were synthesized and screened for antibacterial activity against some clinically important bacteria, such as Pseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Klebsiella pneumoniae and Staphylococcus aureus. The in vitro antibacterial activity was determined by the Agar Ditch technique using DMF (polar) and 1,4-dioxane (non polar) as solvents. The Schiff bases showed greater activity than theirmetal complexes; themetal complexes showed differential effects on the bacterial strains investigated and the solvent used, suggesting that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. The Schiff base ADS3 in the polar solvent DMF showed better antibacterial activity towards the investigated bacterial strains. Amongst the four metals, Zn showed the best antibacterial activity followed by Fe in 1,4-dioxane while Ni followed by Zn and Fe showed the best antibacterial activity in DMF. P. vulgaris was the most resistant bacteria.


2019 ◽  
Vol 8 (4) ◽  
pp. 675-681

Metal complexes synthesized from Schiff bases and furthermore Schiff bases are versatile in nature. Such types of compounds were prepared from the condensation of an amino compound with carbonyl compounds (aldehyde or ketone) during which the carbonyl group is replaced by an imine or azomethine group. Schiff bases and their derivatives are widely employed in industries, polymers, dyes and medicative and pharmaceutical fields and additionally exhibit biological activities like antibacterial, antifungal, anti-inflammatory, antimalarial, antiviral, and antipyretic properties. Many Schiff base metal complexes exhibit glorious catalytic activities in numerous mechanisms. Their several applications in homogenous and heterogeneous catalysis were according troughout last decade. Several Schiff base complexes were helpful for their application as catalysts in reactions involving at high temperatures because of the high thermal and moisture stabilities. This text totally based on literature review with examples of the most promising applied Schiff bases and their complexes in several areas, summarizing the applications of Schiff bases and their numerous derivatives and complexes.


2021 ◽  
Vol 29 ◽  
Author(s):  
Santiago Rostán ◽  
Graciela Mahler ◽  
Lucía Otero

Abstract: The discovery of the anticancer activity of cisplatin has marked the emergence of modern Inorganic Medicinal Chemistry. This field of research is concerned with the application of inorganic compounds to therapy or diagnosis of disease. In particular, metal coordination of bioactive ligands has gained recognition in drug design. The interaction between transition metal ions and the organic drugs could enhance their diagnostic and therapeutic potentials by improving the stability and/or bioavailability or by achieving a metal-drug synergism through a dual or multiple mechanism of action. The isosteric replacement of sulfur by selenium in thiosemicarbazones leads to selenosemicarbazones. This class of compounds exhibit numerous biological activities like antitumor, antimicrobial, antiviral etc. and, in most cases, they were more pronounced in comparison to the sulfur analogues. On the other hand, while the effect of transition metal complexation on the biological activity of thiosemicarbazones has been widely studied, the pharmacological activity of the corresponding metal-selenosemicarbazone compounds has been less explored. In this work, the most relevant results related to the selenosemicarbazone metal complexes as potential metal-based drugs have been reviewed.


Author(s):  
Kehinde Olurotimi Ogunniran ◽  
Joseph Adeyemi Adekoya ◽  
Cyril Ehi- Eromosele ◽  
Olayinka Oyewale Ajani ◽  
Akinlolu Kayode ◽  
...  

Nicotinic acid hydrazide and 2,4-dihydoxylbenzaldehyde were condensed at 20 °C to form an acylhydrazone (H3L1) with ONO coordination pattern. The structure of the acylhydrazone was elucidated by using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Mn(II), Fe(II), Pt(II) Zn(II) and Pd(II)] of the hydrazone ligand were synthesized and their structural characterization were achieved by several physicochemical methods namely: elemental analysis, electronic spectra, infrared, EPR, molar conductivity and powder X-ray diffraction studies. An octahedral geometry was suggested for both Pd(II) and Zn(II) complexes while both Mn(II) and Fe(II) complexes conformed with tetrahedral pyramidal. However, Pt(II) complex agreed with tetrahedral geometry. In vitro antitubercular activity study of the ligand and the metal complexes were evaluated against Mycobacterium tuberculosis, H37Rv, by using micro-diluted method. The results obtained revealed that (PtL1) (MIC = 0.56 mg/mL), (ZnL1) (MIC = 0.61 mg/mL), (MnL1) (MIC = 0.71 mg/mL) and (FeL1) (MIC = 0.82 mg/mL), exhibited a significant activity when compared with first line drugs such as isoniazid (INH) (MIC = 0.9 mg/mL). H3L1 exhibited lesser antitubercular activity with MIC value of 1.02 mg/mL. However, the metal complexes displayed higher cytotoxicity but were found to be non-significant different (P > 0.05) to isoniazid drug.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 47-51
Author(s):  
Yasmina Ouzid ◽  
Siliya Karaoui ◽  
Noria Smail Saadoun ◽  
Karim Houali

Medicinal plants are an inexhaustible source of molecules. They are colonized by mycoendophytes, fungi living in their tissues without apparent symptoms. These fungi can provide secondary metabolites with biological activities. It is with this in mind that we are interested in a spontaneous plant from the dayas region (Laghouat, Algeria): Peganum harmala or Harmel, a toxic medicinal plant belonging to the family Zygophyllaceae. Our study consists in highlighting the antibacterial activity of four kinds of mycoendophytes: Cladosporium, Alternaria, Aspergillus and Penicillium isolated from the leaves of this plant. The antibacterial activity is evaluated by the technique of the double disk diffusion on agar with respect to some Gram-positive bacterial strains. We have adopted two protocols for this purpose. For the first, the mycelia of all the mushrooms are deposited in the same petri dish. For the second, a single disc of the mycelium of a single species is deposited per box. The results obtained show a difference in the sensitivity of the bacterial strains to the bioactive substances of the mycoendophytes studied. The Alternaria genus showed the most significant activity. ANOVA performed between the mean diameters of the mycoendophyte inhibition zones and the antibiotic test disc: Chloramphenicol showed a highly significant difference between these two measurements. The Newman-Keuls test revealed a difference in the susceptibility of bacterial strains to the secondary metabolites of fungus mycoendophytes of Peganum harmala according to the two protocols used. The antibacterial effect is related to interactions between endophytic fungi and their host plant.


Sign in / Sign up

Export Citation Format

Share Document