scholarly journals In-Vitro Antibacterial Activity of Endophytic Fungi from Peganum harmala (Laghouat, Algeria)

2020 ◽  
Vol 10 (3-s) ◽  
pp. 47-51
Author(s):  
Yasmina Ouzid ◽  
Siliya Karaoui ◽  
Noria Smail Saadoun ◽  
Karim Houali

Medicinal plants are an inexhaustible source of molecules. They are colonized by mycoendophytes, fungi living in their tissues without apparent symptoms. These fungi can provide secondary metabolites with biological activities. It is with this in mind that we are interested in a spontaneous plant from the dayas region (Laghouat, Algeria): Peganum harmala or Harmel, a toxic medicinal plant belonging to the family Zygophyllaceae. Our study consists in highlighting the antibacterial activity of four kinds of mycoendophytes: Cladosporium, Alternaria, Aspergillus and Penicillium isolated from the leaves of this plant. The antibacterial activity is evaluated by the technique of the double disk diffusion on agar with respect to some Gram-positive bacterial strains. We have adopted two protocols for this purpose. For the first, the mycelia of all the mushrooms are deposited in the same petri dish. For the second, a single disc of the mycelium of a single species is deposited per box. The results obtained show a difference in the sensitivity of the bacterial strains to the bioactive substances of the mycoendophytes studied. The Alternaria genus showed the most significant activity. ANOVA performed between the mean diameters of the mycoendophyte inhibition zones and the antibiotic test disc: Chloramphenicol showed a highly significant difference between these two measurements. The Newman-Keuls test revealed a difference in the susceptibility of bacterial strains to the secondary metabolites of fungus mycoendophytes of Peganum harmala according to the two protocols used. The antibacterial effect is related to interactions between endophytic fungi and their host plant.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Paola Cynthia Emoh Demeni ◽  
Patrick Hervé Diboue Betote ◽  
Christelle Wayoue Kom ◽  
Eric Ngalani Tchamgoue ◽  
Esther Del Florence Ndedi Moni ◽  
...  

This study evaluated the antibacterial efficacy of methanolic extracts of isolated endophytic fungi from stem barks and leaves of Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. Suaveolens against Klebsiella pneumoniae ATCC 43816, Haemophilus influenzae ATCC 49247, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 35218, responsible for causing pneumonia. The endophytic fungi were isolated and characterized in the Potato Dextrose Agar (PDA), Sabouraud Dextrose Agar (SDA), and Czapek Dox Agar (CDA) media. The fungi and their methanolic extracts were tested for in vitro antibacterial potential by antagonistic assay for endophytic fungi against bacterial pathogens and microdilution method. The phytochemical screening of extracts was carried out according to the colorimetric and precipitation methods to reveal the presence of secondary metabolites. The results showed that 24 macroscopically and microscopically distinct endophytic fungi were isolated, identified, and stored. These endophytic fungi possessed antibacterial activity against the selected bacterial strains with inhibition zones ranging from 7.00 to 25.00 mm. The endophytic fungi GS15 and AB24 have presented the inhibitions zones of 20.33 mm and 25.00 mm, respectively, and these were better than the ones obtained for Levofloxacin®. The endophytes with inhibition zones greater than 10 mm were used for extraction of their secondary metabolites. The endophytic fungi extracts showed antibacterial activity with the minimum inhibitory concentrations (MICs) ranging from 6.25 × 10−4 to 2 × 10−2 g/L and the minimum bactericidal concentrations (MBCs) ranging from 2.5 × 10−3 to 2 × 10−2 g/L. The endophytic fungi GS15 extract was the most effective extract; it showed bactericidal effects on the tested bacterial strains. The phytochemical screening of the extracts revealed the presence of secondary metabolites classes, responsible for causing the obtained antibacterial activity. Thus, the endophytic fungi methanolic extracts from A. boonei and G. suaveolens have the potential to inhibit the growth of bacteria responsible for nosocomial pneumonia.


2020 ◽  
Vol 17 (36) ◽  
pp. 18-31
Author(s):  
Ahmad khadem HACHIM ◽  
Rashid Rahim HATEET ◽  
Tawfik Muhammad MUHSIN

The purpose of the present work aimed at exploring the potential biochemical components and biological activities of an organic extract of the white truffle Tirmania nivea collected from the Iraqi desert, then test the organic extract against the Cytotoxicity on Human Larynx carcinoma cells and selected strains of pathogenic bacteria. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry GC/MSS were used to analyze mycochemical compositions. The antibacterial activity and Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was investigated using a disk diffusion agar method. The truffle extract's cytotoxicity effect against the larynx cell line (Hep-2) was assessed by the MTT assay (in vitro). FTIR results provided the presence of phenol, carboxylic acid, and alkane's functional group, The GC-MS analysis of T. nivea disclose the existence of nineteen compounds that can contribute to the pharmaceutical properties of the truffle. As for antibacterial activity result, A growth inhibition activity of truffle extract at (18-40 mm inhibition zones) against the tested pathogenic bacterial strains was detected, which minimum inhibitory concentration values ranged from 3.12 to 6.25 mg/mL for Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) Respectively. The results of cytotoxicity shown that the organic truffle extract exhibited a high inhibitory rate (52.685%) against cell line (Hep-2) at a concentration of 1.56 ?g/mL. In this work, the results showed that the organic extracts of T. nivea are very promising as cancer cytotoxicity and antibacterial agent for future medical applications.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-7
Author(s):  
Barbara Maglione ◽  

Aim: The effective in vitro antibacterial activity on Staphylococcus aureus (S.aureus), Pseudomonas aeruginosa (P.aeruginosa), Klebsiella pneumoniae (K.pneumoniae),Escherichia coli (E.Coli) and the combination of S.aureus and K. pneumonia of a topical cream based on 0.1% polyhexanidewas compared to a topical cream based on 1% silver sulfadiazine.A topical cream containing 0,1% gentamicin was used as a positive control and a white blank topical cream was used as negative control. Materials and Methods: The in vitro antibacterial activities were determined by agar well-diffusion assay. Two-way Analysis of Variance (ANOVA) was used to test, by calculation of P-values, for significant antiseptic activity in bacteria treated with 0.1% polyhexanide topical cream compared to 1% silver sulfadiazine and to the negative and positive controls. Results: Among the derivatives tested, all the active topical creams analyzed were able to reduce microbial strains. The topical cream based on 0.1% polyhexanide showed a significantly higher antibacterial efficacy in comparison to the topical cream based on 1% silver sulfadiazine on S. aureus and K. pneumonia and on the combination of S. aureus and K. pneumoniae,while no significant difference was detected between the antibacterial activity of the two topical creams against P. aeruginosa and E. coli. Conclusion: These results provide a further insight into the antibacterial activity of polyhexanide and its non-inferiority compared to silver sulfadiazine towards certain bacterial strains (P. aeruginosa and E. coli) and superiority towards other (S. aureus and K. pneumoniae)and support the use of 0.1% Polyhexanide topical preparation for the treatment of wounds that are infected or at risk of infection.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


2017 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Salisu Abubakar ◽  
Rebeccah Wusa Ndana ◽  
Abolade Samuel Afolabi

The focus of this research work was to isolates and identify endophytic fungi from young leaves and stems (twig) of Azadirachta indica, family (Meliaceae) for the production and assay of the produced secondary metabolites. Altogether 126 segments were used, of which 63 segments each from leaves and stems (twig) tissues were screened, using modified surface sterilization techniques. A total of 12 species of endophytic fungi were purely isolated, Penicillium spp was randomly selected for the extraction and evaluation of its secondary metabolites. The eluent collected from column chromatography mixture of ethylacetate and n- hexane (50:50v/v) was phytochemically screened, and the results showed the presence of saponins, flavonoids and phenols. Based on disc diffusion method of sensitivity, the eluent possessed some degree of antibacterial and antifungal activities. In addition, in-vitro antioxidant potentiality of the eluent was also evaluated using 2, 2- Diphenyl-1-picrylhydrazyl radical (DPPH, Sigma Aldrich). Statistical package for social science (SPSS 3/93) software was used to analyze the results using one way Analysis of Variance (ANOVA), which revealed no significant difference, on the effect of concentrations of eluent on test organisms but the eluent showed significant difference on scavenging free radicals at a critical value (p >0.05).


2020 ◽  
Author(s):  
G. Schiavo ◽  
D. Falciglia ◽  
S. Maurelli ◽  
S. Riccio ◽  
Barbara Maglione

Abstract 1.1 Aim: The effective in vitro antibacterial activity on Staphylococcus aureus (S.aureus), Pseudomonas aeruginosa (P.aeruginosa), Klebsiella pneumoniae (K.pneumoniae), Escherichia coli (E.Coli) and the combination of S.aureus and K. pneumoniae of a topical cream based on 0.1% polyhexanide was compared to a topical cream based on 1% silver sulfadiazine. A topical cream containing 0,1% gentamicin was used as a positive control and a white blank topical cream was used as negative control.1.2 Materials and Methods: The in vitro antibacterial activities were determined by agar well-diffusion assay. Two-way analysis of variance (ANOVA) was used to test, by calculation of P-values, for significant antiseptic activity in bacteria treated with 0,1% polyhexanide topical cream compared to 1% silver sulfadiazine and to the negative and positive controls. 1.3 Results: Among the derivatives tested, all the active topical creams analyzed were able to reduce microbial strains. The topical cream based on 0.1% polyhexanide showed a significantly higher antibacterial efficacy in comparison to the topical cream based on 1% silver sulfadiazine on S. aureus and K. pneumoniae and on the combination of S. aureus and K. pneumoniae, while no significant difference was detected between the antibacterial activity of the two topical creams against P. aeruginosa and E. coli. 1.4 Conclusion: These results provide a further insight into the antibacterial activity of polyhexanide and its non-inferiority compared to silver sulfadiazine towards certain bacterial strains (P. aeruginosa and E. coli) and superiority towards other (S. aureus and K. pneumoniae) and support the use of 0.1% Polyhexanide topical preparation for the treatment of wounds that are infected or at risk of infection.


2007 ◽  
Vol 342-343 ◽  
pp. 941-944 ◽  
Author(s):  
S.H. Oh ◽  
M.J. Choi ◽  
B.I. Kim ◽  
Kwang Mahn Kim ◽  
Kyoung Nam Kim

The main objective of this study was to manufacture an oral rinse using the natural antibacterial agent (phytosphingosine, Doosan, Korea) for the prevention of periodontal disease and dental caries. Phytosphingosine is known to inhibit the growth of bacterial strains and induce apoptotic cell death in human cancer lines. In this study, antibacterial activity and cytotoxicity of oral rinses were performed with an experimental group containing phytosphingosine(PS) in vitro. Control groups consist of two Korean products and two American products containing chlorhexidine and cetylpyridinium chloride, respectively. There was no significant difference between experimental and control groups in the antibacterial activity and cytotoxicity except for Chika Chika Liq (p<0.05). According to the results, antibacterial activity of oral rinse containing PS was 99.62%, the strongest contact inhibition of Streptococcus mutans strain among tested groups. In the cytotoxicity test of oral rinses, PS had a weaker cytotoxicity than control groups in mouse and human normal cell lines and showed the strongest cytotoxicity in human oral cancer cell lines (KB cell). From the results, PS may be widely used as an oral rinse for the healthy and the patients with oral cancers in the near future.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 511 ◽  
Author(s):  
Bruno Casciaro ◽  
Andrea Calcaterra ◽  
Floriana Cappiello ◽  
Mattia Mori ◽  
Maria Loffredo ◽  
...  

Staphylococcus aureus is a major human pathogen causing a wide range of nosocomial infections including pulmonary, urinary, and skin infections. Notably, the emergence of bacterial strains resistant to conventional antibiotics has prompted researchers to find new compounds capable of killing these pathogens. Nature is undoubtedly an invaluable source of bioactive molecules characterized by an ample chemical diversity. They can act as unique platform providing new scaffolds for further chemical modifications in order to obtain compounds with optimized biological activity. A class of natural compounds with a variety of biological activities is represented by alkaloids, important secondary metabolites produced by a large number of organisms including bacteria, fungi, plants, and animals. In this work, starting from the screening of 39 alkaloids retrieved from a unique in-house library, we identified a heterodimer β-carboline alkaloid, nigritanine, with a potent anti-Staphylococcus action. Nigritanine, isolated from Strychnos nigritana, was characterized for its antimicrobial activity against a reference and three clinical isolates of S. aureus. Its potential cytotoxicity was also evaluated at short and long term against mammalian red blood cells and human keratinocytes, respectively. Nigritanine showed a remarkable antimicrobial activity (minimum inhibitory concentration of 128 µM) without being toxic in vitro to both tested cells. The analysis of the antibacterial activity related to the nigritanine scaffold furnished new insights in the structure–activity relationships (SARs) of β-carboline, confirming that dimerization improves its antibacterial activity. Taking into account these interesting results, nigritanine can be considered as a promising candidate for the development of new antimicrobial molecules for the treatment of S. aureus-induced infections.


2021 ◽  
Vol 33 (2) ◽  
pp. 266-270
Author(s):  
VIVEK KUMAR ◽  
RAJNISH KUMAR ◽  
SALAHUDDIN ◽  
AVIJIT MAZUMDER

A series of novel Mannich bases 5-(naphthalen-2-yloxymethyl)-3-(substituted)aminomethyl-3H-[1,3,4]oxadiazole-2-thiones (5a-h) were synthesized by aminomethylation of substituted-1,3,4-oxadiazole-2(3H)-thione by equimolar concentration of primary or secondary amines. Synthesized compounds were characterized by spectrometric techniques (IR, 1H & 13C NMR), and evaluated for antibacterial potential against various Gram-positive and Gram-negative bacterial strains using cup-plate method employing ciprofloxacin as standard drug. Compounds 5a-c and 5g exhibited strong antibacterial activity against tested bacterial strains. Compound 5a was active against Bacillus pumilus, Shigella dysenteriae and Vibrio cholera; compound 5b exhibited significant activity against Bacillus pumilus, and Shigella dysenteriae; compound 5c was active against Bacillus pumilus and Vibrio cholera and compound 5g was active against Dshigella boydii and Acinetobacter aceti bacterial strains. The SAR study revealed that the synthesized compounds (5a-h) having less bulky group exhibited good antibacterial activity.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Celiwe Innocentia Nxumalo ◽  
Londeka Sibusisiwe Ngidi ◽  
Jabulani Siyabonga Emmanuel Shandu ◽  
Tsolanku Sidney Maliehe

Abstract Background Endophytes, especially those that are found from ethnopharmacologically noteworthy medicinal plants have attracted attention due to their diverse bioactive metabolites of pharmacological importance. Methods This study aimed at isolating endophytic bacterium from the leaves of Anredera cordifolia CIX1 for its bioactive metabolites. The endophytic isolates were identified by 16S rRNA sequence and investigated for antibiotic sensitivity using different antibiotics. The secondary metabolites were evaluated for antibacterial activity against four bacterial strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods were used to assess their scavenging activities. The chemical components were analysed by gas chromatography-mass spectrometry (GC-MS). Results Out of 13 isolates, Isolate 1 was identified as Pseudomonas aeruginosa CP043328.1. It was resistant to clindamycin, ertapenem, penicillin G, amoxicillin, cephalothin and kanamycin but sensitive to imipenem, meropenem, and gentamycin. Its extract demonstrated antibacterial activity with minimum inhibitory concentration value of 0.098 against Bacillus cereus (ATCC 10102) and Staphylococcus aureus (ATCC 25925) and 0.391 mg/ml against Escherichia coli (ATCC 25922) and Proteus mirabilis (ATCC 25933). The extract revealed DPPH and ABTS scavenging activities with half maximal inhibitory concentration value of 0.650 mg/ml and 0.15 mg/ml, respectively. The GC-MS revealed a total of 15 compounds with diisooctyl phthalate (50.51%) and [1, 2, 4] oxadiazole, 5-benzyl-3 (10.44%) as major components. Conclusions P. aeruginosa CP043328.1 produced secondary metabolites with antibacterial and antioxidant activities.


Sign in / Sign up

Export Citation Format

Share Document