scholarly journals Offline Gesture Recognition System for Yorùbá Numeral Counting

Author(s):  
Kudirat Oyewumi Jimoh ◽  
Temilola Morufat Adepoju ◽  
Aladejobi A. Sobowale ◽  
Oluwatobi A. Ayilara

Aims: The study aimed to determine the specific features responsible for the recognition of gestures, to design a computational model for the process and to implement the model and evaluate its performance. Place and Duration of Study: Department of Computer Engineering, Federal Polytechnic, Ede, between August 2017 and February 2018. Methodology: Samples of hand gesture were collected from the deaf school. In total, 40 samples containing 4 gestures for each numeral were collected and processed. The collected samples were pre-processed and rescaled from 340 × 512 pixels to 256 × 256 pixels. The samples were examined for the specific characteristics responsible for the recognition of gestures using edge detection and histogram of the oriented gradient as feature extraction techniques. The model was implemented in MATLAB using Support Vector Machine (SVM) as its classifier. The performance of the system was evaluated using precision, recall and accuracy as metrics. Results: It was observed that the system showed a high classification rate for the considered hand gestures. For numerals 1, 3, 5 and 7, 100% accuracy were recorded, numerals 2 and 9 had 90% accuracy, numeral 4 had 85.67% accuracy, numeral 6 had 93.56%, numeral 8 had 88% while numeral 10 recorded 90.72% accuracy. An average recognition rate of 95% on tested data was recorded over a dataset of 40 hand gestures. Conclusion: The study has successfully classified hand gesture for Yorùbá Sign Language (YSL). Thus, confirming that YSL could be incorporated into the deaf educational system. The developed system will enhance the communication skills between hearing and hearing impaired people.  

2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Khader Mohammad ◽  
Sos Agaian

Text embedded in an image contains useful information for applications in the medical, industrial, commercial, and research fields. While many systems have been designed to correctly identify text in images, no work addressing the recognition of degraded text on clear plastic has been found. This paper posits novel methods and an apparatus for extracting text from an image with the practical assumption: (a) poor background contrast, (b) white, curved, and/or differing fonts or character width between sets of images, (c) dotted text printed on curved reflective material, and/or (d) touching characters. Methods were evaluated using a total of 100 unique test images containing a variety of texts captured from water bottles. These tests averaged a processing time of ~10 seconds (using MATLAB R2008A on an HP 8510 W with 4 G of RAM and 2.3 GHz of processor speed), and experimental results yielded an average recognition rate of 90 to 93% using customized systems generated by the proposed development.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Peng Liu ◽  
Xiangxiang Li ◽  
Haiting Cui ◽  
Shanshan Li ◽  
Yafei Yuan

Hand gesture recognition is an intuitive and effective way for humans to interact with a computer due to its high processing speed and recognition accuracy. This paper proposes a novel approach to identify hand gestures in complex scenes by the Single-Shot Multibox Detector (SSD) deep learning algorithm with 19 layers of a neural network. A benchmark database with gestures is used, and general hand gestures in the complex scene are chosen as the processing objects. A real-time hand gesture recognition system based on the SSD algorithm is constructed and tested. The experimental results show that the algorithm quickly identifies humans’ hands and accurately distinguishes different types of gestures. Furthermore, the maximum accuracy is 99.2%, which is significantly important for human-computer interaction application.


2013 ◽  
Vol 765-767 ◽  
pp. 2195-2198
Author(s):  
Wei Dong Xie ◽  
Kan Gao ◽  
Ji Sheng Shen

In order to meet the development of shock absorber on-line detection, a new method of indicator diagrams recognition for shock absorber based on support vector machine (SVM) is proposed. Different fault patterns of shock absorber indicator diagram are discussed, including their main causes. The recognition model is constructed each with Linear, Polynomial and Radial Basis Function (RBF) kernel function. The experimental results show that the best average recognition rate is 96.4%. This method is effective in indicator diagram fault recognition of shock absorber.


2011 ◽  
Vol 188 ◽  
pp. 629-635
Author(s):  
Xia Yue ◽  
Chun Liang Zhang ◽  
Jian Li ◽  
H.Y. Zhu

A hybrid support vector machine (SVM) and hidden Markov model (HMM) model was introduced into the fault diagnosis of pump. This model had double layers: the first layer used HMM to classify preliminarily in order to get the coverage of possible faults; the second layer utilized this information to activate the corresponding SVMs for improving the recognition accuracy. The structure of this hybrid model was clear and feasible. Especially the model had the potential of large-scale multiclass application in fault diagnosis because of its good scalability. The recognition experiments of 26 statuses on the ZLH600-2 pump showed that the recognition capability of this model was sound in multiclass problems. The recognition rate of one bearing eccentricity increased from SVM’s 84.42% to 89.61% while the average recognition rate of hybrid model reached 95.05%. Although some goals while model constructed did not be fully realized, this model was still very good in practical applications.


2002 ◽  
Vol 14 (01) ◽  
pp. 12-19 ◽  
Author(s):  
DUU-TONG FUH ◽  
CHING-HSING LUO

The standard Morse code defines the tone ratio (dash/dot) and the silent ratio (dash-space/dotspace) as 3:1. Since human typing ratio can't keep this ratio precisely and the two ratios —tone ratio and silent ratio—are not equal, the Morse code can't be recognized automatically. The requirement of the standard ratio is difficult to satisfy even for an ordinary person. As for the unstable Morse code typing pattern, the auto-recognition algorithms in the literature are not good enough in applications. The disabled persons usually have difficulty in maintaining a stable typing speeds and typing ratios, we therefore adopted an Expert-Gating neural network model to implement in single chip and recognize online unstable Morse codes. Also, we used another method—a linear back propagation recalling algorithm, to implement in single chip and recognize unstable Morse codes. From three person tests: Test one is a cerebral palsy; Test two is a beginner: Test three is a skilled expert, we have the results: in the experiment of test one, we have 91.15% (use 6 characters average time series as thresholds) and 91.54% (learning 26 characters) online average recognition rate; test two have 95.77% and 96.15%, and test three have 98.46% and 99.23% respectively. As for linear back propagation recalling method online recognized rate, we have the results from test one: 92.31% online average recognition rate; test two: 96.15%; and test three 99.23% respectively. So, we concluded: The Expert-Gating neural network and the linear back propagation recalling algorithm have successfully overcome the difficulty of analyzing a severely online unstable Morse code time series and successfully implement in single chip to recognize online unstable Morse code.


Author(s):  
Binod Kumar Prasad

Purpose of the study: The purpose of this work is to present an offline Optical Character Recognition system to recognise handwritten English numerals to help automation of document reading. It helps to avoid tedious and time-consuming manual typing to key in important information in a computer system to preserve it for a longer time. Methodology: This work applies Curvature Features of English numeral images by encoding them in terms of distance and slope. The finer local details of images have been extracted by using Zonal features. The feature vectors obtained from the combination of these features have been fed to the KNN classifier. The whole work has been executed using the MatLab Image Processing toolbox. Main Findings: The system produces an average recognition rate of 96.67% with K=1 whereas, with K=3, the rate increased to 97% with corresponding errors of 3.33% and 3% respectively. Out of all the ten numerals, some numerals like ‘3’ and ‘8’ have shown respectively lower recognition rates. It is because of the similarity between their structures. Applications of this study: The proposed work is related to the recognition of English numerals. The model can be used widely for recognition of any pattern like signature verification, face recognition, character or word recognition in another language under Natural Language Processing, etc. Novelty/Originality of this study: The novelty of the work lies in the process of feature extraction. Curves present in the structure of a numeral sample have been encoded based on distance and slope thereby presenting Distance features and Slope features. Vertical Delta Distance Coding (VDDC) and Horizontal Delta Distance Coding (HDDC) encode a curve from vertical and horizontal directions to reveal concavity and convexity from different angles.


2020 ◽  
Vol 7 (2) ◽  
pp. 164
Author(s):  
Aditiya Anwar ◽  
Achmad Basuki ◽  
Riyanto Sigit

<p><em>Hand gestures are the communication ways for the deaf people and the other. Each hand gesture has a different meaning.  In order to better communicate, we need an automatic translator who can recognize hand movements as a word or sentence in communicating with deaf people. </em><em>This paper proposes a system to recognize hand gestures based on Indonesian Sign Language Standard. This system uses Myo Armband as hand gesture sensors. Myo Armband has 21 sensors to express the hand gesture data. Recognition process uses a Support Vector Machine (SVM) to classify the hand gesture based on the dataset of Indonesian Sign Language Standard. SVM yields the accuracy of 86.59% to recognize hand gestures as sign language.</em></p><p><em><strong>Keywords</strong></em><em>: </em><em>Hand Gesture Recognition, Feature Extraction, Indonesian Sign Language, Myo Armband, Moment Invariant</em></p>


Author(s):  
Malek Zakarya Alksasbeh ◽  
Ahmad H AL-Omari ◽  
Bassam A. Y. Alqaralleh ◽  
Tamer Abukhalil ◽  
Anas Abukarki ◽  
...  

<span>Sign languages are the most basic and natural form of languages which were used even before the evolution of spoken languages. These sign languages were developed using various sign "gestures" that are made using hand palm. Such gestures are called "hand gestures". Hand gestures are being widely used as an international assistive communication method for deaf people and many life aspects such as sports, traffic control and religious acts. However, the meanings of hand gestures vary among different civilization cultures. Therefore, because of the importance of understanding the meanings of hand gestures, this study presents a procedure whichcan translate such gestures into an annotated explanation. The proposed system implements image and video processing which are recently conceived as one of the most important technologies. The system initially, analyzes a classroom video as an input, and then extracts the vocabulary of twenty gestures. Various methods have been applied sequentially, namely: motion detection, RGB to HSV conversion, and noise removing using labeling algorithms. The extraction of hand parameters is determined by a K-NN algorithm to eventually determine the hand gesture and, hence showing their meanings. To estimate the performance of the proposed method, an experiment using a hand gesture database is performed. The results showed that the suggested method has an average recognition rate of 97%. </span>


Sign in / Sign up

Export Citation Format

Share Document