scholarly journals Fingerprint Intramodal Biometric System Based on ABC Feature Fusion

Author(s):  
J. O. Jooda ◽  
A. O. Oke ◽  
E. O. Omidiora ◽  
O. T. Adedeji

Unimodal biometrics system (UBS) drawbacks include noisy data, intra-class variance, inter-class similarities, non-universality, which all affect the system's classification performance. Intramodal fingerprint fusion can overcome the limitations imposed by UBS when features are fused at the feature level as it is a good approach to boost the performance of the biometric system. However, feature level fusion leads to high dimensionality of feature space which can be overcame by Feature Selection (FS). FS improves the performance of classification by selecting only relevant and useful information from extracted feature sets being an optimization problem. Artificial Bee Colony (ABC) is an optimizing algorithm that has been frequently used in solving FS problems because of its simple concept, use of few control parameters, easy implementation and good exploration characteristics. ABC was proposed for optimized feature selection prior to the classification of Fingerprint Intramodal Biometric System (FIBS). Performance evaluation of ABC-based FIBS showed the system had a Sensitivity of 97.69% and RA of 96.76%. The developed ABC optimized feature selection reduced the high dimensionality of features space prior to classification tasks thereby increasing sensitivity and recognition accuracy of FIBS.

Author(s):  
Mahua Bhattacharya ◽  
Arpita Das

The problem of feature selection consists of finding a significant feature subset of input training as well as test patterns that enable to describe all information required to classify a particular pattern. In present paper we focus in this particular problem which plays a key role in machine learning problems. In fact, before building a model for feature selection, our goal is to identify and to reject the features that degrade the classification performance of a classifier. This is especially true when the available input feature space is very large, and need exists to develop an efficient searching algorithm to combine these features spaces to a few significant one which are capable to represent that particular class. Presently, authors have described two approaches for combining the large feature spaces to efficient numbers using Genetic Algorithm and Fuzzy Clustering techniques. Finally the classification of patterns has been achieved using adaptive neuro-fuzzy techniques. The aim of entire work is to implement the recognition scheme for classification of tumor lesions appearing in human brain as space occupying lesions identified by CT and MR images. A part of the work has been presented in this paper. The proposed model indicates a promising direction for adaptation in a changing environment.


Author(s):  
Nor Idayu Mahat ◽  
Maz Jamilah Masnan ◽  
Ali Yeon Md Shakaff ◽  
Ammar Zakaria ◽  
Muhd Khairulzaman Abdul Kadir

This chapter overviews the issue of multicollinearity in electronic nose (e-nose) classification and investigates some analytical solutions to deal with the problem. Multicollinearity effect may harm classification analysis from producing good parameters estimate during the construction of the classification rule. The common approach to deal with multicollinearity is feature extraction. However, the criterion used in extracting the raw features based on variances may not be appropriate for the ultimate goal of classification accuracy. Alternatively, feature selection method would be advisable as it chooses only valuable features. Two distance-based criteria in determining the right features for classification purposes, Wilk's Lambda and bounded Mahalanobis distance, are applied. Classification with features determined by bounded Mahalanobis distance statistically performs better than Wilk's Lambda. This chapter suggests that classification of e-nose with feature selection is a good choice to limit the cost of experiments and maintain good classification performance.


Author(s):  
Sophia S ◽  
Rajamohana SP

In recent times, online shoppers are technically knowledgeable and open to product reviews. They usually read the buyer reviews and ratings before purchasing any product from ecommerce website. For the better understanding of products or services, reviews provided by the customers gives the vital source of information. In order to buy the right products for the individuals and to make the business decisions for the Organization online reviews are very important. These reviews or opinions in turn, allow us to find out the strength and weakness of the products. Spam reviews are written in order to falsely promote or demote a few target products or services. Also, detecting the spam reviews has also become more critical issue for the customer to make good decision during the purchase of the product. A major problem in identifying the fake review detection is high dimensionality of the feature space. Therefore, feature selection is an essential step in the fake review detection to reduce dimensionality of the feature space and to improve the classification accuracy. Hence it is important to detect the spam reviews but the major issues in spam review detection are the high dimensionality of feature space which contains redundant, noisy and irrelevant features. To resolve this, Deep Learning Techniques for selecting features is necessary. To classify the features, classifiers such as Naive Bayes, K Nearest Neighbor are used. An analysis of the various techniques employed to identify false and genuine reviews has been surveyed.


2018 ◽  
Author(s):  
Thomas P. Quinn ◽  
Samuel C. Lee ◽  
Svetha Venkatesh ◽  
Thin Nguyen

AbstractAlthough neuropsychiatric disorders have a well-established genetic background, their specific molecular foundations remain elusive. This has prompted many investigators to design studies that identify explanatory biomarkers, and then use these biomarkers to predict clinical outcomes. One approach involves using machine learning algorithms to classify patients based on blood mRNA expression from high-throughput transcriptomic assays. However, these endeavours typically fail to achieve the high level of performance, stability, and generalizability required for clinical translation. Moreover, these classifiers can lack interpretability because informative genes do not necessarily have relevance to researchers. For this study, we hypothesized that annotation-based classifiers can improve classification performance, stability, generalizability, and interpretability. To this end, we evaluated the performance of four classification algorithms on six neuropsychiatric data sets using four annotation databases. Our results suggest that the Gene Ontology Biological Process database can transform gene expression into an annotation-based feature space that improves the performance and stability of blood-based classifiers for neuropsychiatric conditions. We also show how annotation features can improve the interpretability of classifiers: since annotation databases are often used to assign biological importance to genes, annotation-based classifiers are easy to interpret because the biological importance of the features are the features themselves. We found that using annotations as features improves the performance and stability of classifiers. We also noted that the top ranked annotations tend contain the top ranked genes, suggesting that the most predictive annotations are a superset of the most predictive genes. Based on this, and the fact that annotations are used routinely to assign biological importance to genetic data, we recommend transforming gene-level expression into annotation-level expression prior to the classification of neuropsychiatric conditions.


2021 ◽  
Author(s):  
A B Pawar ◽  
M A Jawale ◽  
Ravi Kumar Tirandasu ◽  
Saiprasad Potharaju

High dimensionality is the serious issue in the preprocessing of data mining. Having large number of features in the dataset leads to several complications for classifying an unknown instance. In a initial dataspace there may be redundant and irrelevant features present, which leads to high memory consumption, and confuse the learning model created with those properties of features. Always it is advisable to select the best features and generate the classification model for better accuracy. In this research, we proposed a novel feature selection approach and Symmetrical uncertainty and Correlation Coefficient (SU-CCE) for reducing the high dimensional feature space and increasing the classification accuracy. The experiment is performed on colon cancer microarray dataset which has 2000 features. The proposed method derived 38 best features from it. To measure the strength of proposed method, top 38 features extracted by 4 traditional filter-based methods are compared with various classifiers. After careful investigation of result, the proposed approach is competing with most of the traditional methods.


2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


2020 ◽  
Vol 36 (16) ◽  
pp. 4423-4431
Author(s):  
Wenbo Xu ◽  
Yan Tian ◽  
Siye Wang ◽  
Yupeng Cui

Abstract Motivation The classification of high-throughput protein data based on mass spectrometry (MS) is of great practical significance in medical diagnosis. Generally, MS data are characterized by high dimension, which inevitably leads to prohibitive cost of computation. To solve this problem, one-bit compressed sensing (CS), which is an extreme case of quantized CS, has been employed on MS data to select important features with low dimension. Though enjoying remarkably reduction of computation complexity, the current one-bit CS method does not consider the unavoidable noise contained in MS dataset, and does not exploit the inherent structure of the underlying MS data. Results We propose two feature selection (FS) methods based on one-bit CS to deal with the noise and the underlying block-sparsity features, respectively. In the first method, the FS problem is modeled as a perturbed one-bit CS problem, where the perturbation represents the noise in MS data. By iterating between perturbation refinement and FS, this method selects the significant features from noisy data. The second method formulates the problem as a perturbed one-bit block CS problem and selects the features block by block. Such block extraction is due to the fact that the significant features in the first method usually cluster in groups. Experiments show that, the two proposed methods have better classification performance for real MS data when compared with the existing method, and the second one outperforms the first one. Availability and implementation The source code of our methods is available at: https://github.com/tianyan8023/OBCS. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document