scholarly journals Evaluation of a Hexaploid Wheat Collection (Triticum aestivum L.) under Drought Stress Conditions Using Stress Tolerance Indices

Author(s):  
Alireza Daneshvar Hosseini ◽  
Ali Dadkhodaie ◽  
Bahram Heidari ◽  
Seyed Abdolreza Kazemeini

Wheat is the most important crop in the world which faces the global problem of drought. Its production is affected by water deficit after pollination in arid and semi-arid regions. An experiment was conducted to assess tolerance of 39 bread wheat genotypes to end-season drought. The experimental design was Randomized Complete Block in three replications and the drought tolerance indices (SSI, STI, TOL, MP and GMP) were calculated for grain yield. The cultivar Cambin produced the highest grain yield under normal irrigation by 369.19 g m-2 while Arina had the highest yield (223.35 g m-2) under drought stress conditions. Stress tolerance (TOL) introduced Hindukesh, Iran2355 and Iran6476 as drought tolerant genotypes. Also, results showed that grain yield under stress and non-stress environments were highly correlated with the mean productivity (MP), the geometric mean productivity (GMP) and tolerance index (TOL). These genotypes could be further used in crosses for genetic studies and breeding programs for improvement tolerance to drought.

2021 ◽  
Author(s):  
Md Habib ◽  
Md Mannan ◽  
Md Karim ◽  
Md Miah ◽  
Hari Singh

Abstract Crop productivity is greatly affected by drought stress. Understanding the drought tolerance capability of the crop varieties available in a country is the foremost consideration for drought adaptation. The objective of this research work was to examine the drought tolerance potentiality of 5 cultivated barley varieties (BARI Barley5, BARI Barley6, BARI Barley7, BARI Barley8 and BARI Barley9) through calculating drought tolerance indices. A completely randomized design (CRD) with three replications was followed in the experiment, where crops were grown under control (80% of FC) and water deficit environment (50% of FC). Stress Tolerance (TOL), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were calculated based on grain yield under control and drought conditions. BARI Barley7 and BARI Barley8 were the most tolerant variety and BARI Barley9 considered as susceptible based on TOL and SSI. Drought tolerance indices like MP, HAM, GMP, TOL as well as STI were showed a high correlation with grain yield under both conditions and were recognized as appropriate indices to identify varieties with high grain yield and low sensitivity to drought stress.


2020 ◽  
Vol 115 (1) ◽  
pp. 105
Author(s):  
Sara KHOSRAVI ◽  
Reza AZIZINEZHAD ◽  
Amin BAGHIZADEH ◽  
Mahmood MALEKI

<p>This study was carried out on grain yield in wheat genotypes with the aim of assessing genetic potential of drought tolerance. The experiment was performed as split plot in the form of randomized complete block design with three replications under normal and drought stress conditions with 32 genotypes. Based on grain yield, and under the condition of non-stress and drought stress, 5 drought tolerance indices are estimated including Tolerance Index (TOL), Stress Tolerance (STI), Mean Productivity (MP), Geometric Mean (GMP) and, Harmonic Mean (HM) for all kinds of genotypes. The analysis of yield correlation and drought tolerance indices in two environments indicated that STI, MP, GMP, HM indices were the most suitable parameters for screening wheat genotypes. Principal components analysis exhibited that the 83 % of first principal component and the 15 % of second one justified the variation of the initial data. Drawing bi-plot diagram declared that Sabalan, Shabrang, Aria, Azar, Azadi, and T2 genotypes were highly functional and resistant to drought stress.</p>


2011 ◽  
Vol 3 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Mina ABARSHAHR ◽  
Babak RABIEI ◽  
Habibollah SAMIZADEH LAHIGI

In order to compare different rice genotypes grown under drought stress conditions a field experiment was conducted. In this study thirty different genotypes of native, breeded and upland cultivars were evaluated. Analysis of variance showed significant differences among genotypes in respect of all vegetative and morphological traits. Genotypes were devided into three groups by cluster analysis based on all studied traits with minimum variance method (Wards Method). The total average indicates significant differences among groups in respect of all morphological and physiological characteristics. In addition, eight drought stress tolerance indices including: sensitivity to stress index (SSI), drought response index (DRI), relative drought index (RDI), tolerance index (TOL), mean productivity index (MP), stress tolerance index (STI), geometric mean productivity index (GMP) and harmonic mean index (HM) were calculated according to their grain yield under drought stress and normal conditions. In general, results of this experimnet revealed that, among rice cultivars Domsephid, Deylamany, Hasansaraei, Sadri, Anbarboo and Domsiah had the highest sensitivity referring to drought stress and produced the lowest grain yield. Also, genotypes of IR24 (breeded of IRRI), Nemat, Sephidroud, Kadoos and Bejar (breeded of Iran) and Vandana, upland cultivar (originally from India) had the highest tolerance to drought stress and produced the highest grain yield. In conclusion, it was suggested that, these cultivars are suitable for drought stress conditions and are appropriate for hybridization with the aim of increasing drought tolerance.


2012 ◽  
Vol 1 (3) ◽  
pp. 543 ◽  
Author(s):  
H. Moradi ◽  
G A. Akbari ◽  
S. Khavari Khorasani ◽  
H A. Ramshini

In order to study the effect of drought stress on morphophysiologic characteristics,yield and yield components of 8 new hybrids of corn (Zea maize L.) and KSC704commercial hybrid as control resistant to drought and warm (which were bred andscreened in Khozestan province condition), an experiment was conducted in aRandomized Complete Block Design (RCBD) with three replications underdrought stress and normal irrigation at Khorasan-Razavi Agriculture ResearchCenter, Mashhad, Iran on June 10, 2011. The results of analyze variance showedthat under normal irrigation and drought condition, there was a significantdifference (p<0.01) between the hybrids. Mean comparison of hybrids revealedthat in normal irrigation H6 and in drought stress H8 hybrid had the maximumgrain yield (12.85 and 6.75 ton/ha, respectively). Based on the grain yields ofstudied hybrids, stress tolerance index (STI), stress susceptibility index (SSI),tolerance index (TOI), mean productivity (MP), geometric mean productivity(GMP), harmonic mean (HM) and golden mean (GM) were estimated. Resultsshowed that among drought tolerance indices, MP, GMP, STI and HM were thebest indices for corn and KSC704 hybrid and H4 had the highest tolerance todrought in Mashhad weather condition.


2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Pooran GOLKAR ◽  
Esmaeil HAMZEH ◽  
Seyed Ali Mohammad MIRMOHAMMADY MAIBODY

<p>Improvement of elite safflower genotypes for drought-tolerance is hampered by a deficiency of effective selection criteria. The present study evaluated 100 genotypes of safflower in terms of their drought tolerance over a period of three years (2016–2018) under both non-stress and drought-stress conditions. The eight drought-tolerance indices of tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), stress tolerance index (STI), yield stability index (YSI), drought resistance index (DI), and harmonic mean (HARM) were calculated based on seed yield under drought (Y<sub>s</sub>) and non-drought (Y<sub>p</sub>) conditions. A high genetic variation was found in drought tolerance among the genotypes studied. The MP, GMP, and STI indices were able to discriminate between tolerant and drought-sensitive genotypes. Plots of the first and second principal components identified drought-tolerant genotypes averaged over the three study years. Cluster analysis divided the genotypes into three distinct groups using the drought tolerance indices. Ultimately, eight genotypes (namely, G<sub>3</sub>, G<sub>11</sub>, G<sub>13</sub>, G<sub>24</sub>, G<sub>33</sub>, G<sub>47</sub>, G<sub>58</sub>, and G<sub>61</sub>) from different origins were detected as more tolerant to drought stress suitable for use in safflower breeding programs in drought-affected areas. The most tolerant and susceptible genotypes could be exploited to produce mapping populations for drought tolerance breeding programs in safflower.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 994
Author(s):  
Norain Jamalluddin ◽  
Festo J. Massawe ◽  
Sean Mayes ◽  
Wai Kuan Ho ◽  
Ajit Singh ◽  
...  

Amaranth (Amaranthus tricolor), an underutilized climate smart crop, is highly nutritious and possesses diverse drought tolerance traits, making it an ideal crop to thrive in a rapidly changing climate. Despite considerable studies on the growth and physiology of plants subjected to drought stress, a precise trait phenotyping strategy for drought tolerance in vegetable amaranth is still not well documented. In this study, two drought screening trials were carried out on 44 A. tricolor accessions in order to identify potential drought-tolerant A. tricolor germplasm and to discern their physiological responses to drought stress. The findings revealed that a change in stem biomass was most likely the main mechanism of drought adaptation for stress recovery, and dark-adapted quantum yield (Fv/Fm) could be a useful parameter for identifying drought tolerance in amaranth. Three drought tolerance indices: geometric mean productivity (GMP), mean productivity (MP) and stress tolerance index (STI) identified eight drought-tolerant accessions with stable performance across the two screening trials. The highly significant genotypic differences observed in several physiological traits among the amaranth accessions indicate that the amaranth panel used in this study could be a rich source of genetic diversity for breeding purposes for drought tolerance traits.


2013 ◽  
Vol 5 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Mohhamad Reza NAGHAVI ◽  
Alireza POUR ABOUGHADAREH ◽  
Marouf KHALILI

In order to study the effect of drought stress on eight cultivars corn (Zea mays L.), an experiment was conducted in a factorial experimental on the basis of randomized complete block design under two irrigated conditions during 2010-2011 cropping season. Twelve drought tolerance/resistance indices including stress tolerance index (STI), stress susceptibility index (SSI), tolerance index (TOL), geometric mean production (GMP), mean production (MP), yield index (YI), yield stability index (YSI), drought resistance index (DI), relative drought index (RDI), stress susceptibility percentage index (SSPI) and modified stress tolerance (K1STI and K2STI) were calculated based on grain yield under drought and irrigated conditions. Yield in stress and non-stress conditions were significantly and positively correlated with STI, GMP, MP, YI, TOL, DI, RDI, YSI, SSPI, K1STI, and K2STI and negatively correlated with SSI. Yield in stress and non-stress conditions were significantly and positively correlated with STI, GMP, MP, YI, TOL, DI, RDI, YSI, SSPI, K1STI, and K2STI and negatively correlated with SSI. Screening drought tolerant cultivars using ranking method, three dimensional plots discriminated cultivars ‘KSC720’, KSC 710GT and ‘KSC 700’ as the most drought tolerant. Cluster analysis classified the cultivars into three groups i.e., tolerant, susceptible and semi-susceptible to drought conditions. In general, Results of this study showed that among drought tolerance indices STI, YI, SSPI, K1STI, and K2STI can be used as the most suitable indicators for screening drought tolerant cultivars and ‘KSC720’, KSC 710 GT and ‘KSC 700’ had the highest tolerance to drought in our studies condition.


2020 ◽  
Vol 12 (2) ◽  
pp. 376-386
Author(s):  
Dorina BONEA

Drought is one of the major abiotic stress factors limiting crops production in Oltenia area, Romania. In order to study the response of six maize hybrids to drought stress, the trials were conducted in research field of ARDS Simnic – Craiova, during 2017-2018 (non-stressed conditions) and 2018-2019 (drought stress). Six tolerance indices including: abiotic tolerance index (ATI), stress susceptibility percentage index (SSPI), Stress tolerance index (STI), mean productivity (MP), relative drought index (RDI) and golden mean (GM), were utilized on the basis of grain yield. Results from analysis of variance showed that there is a significant difference in 1% of probability level among hybrids in terms of grain yield and tolerance indices. The yield in non-stress conditions (Yp) showed significant positive correlations with ATI, SSPI, STI and MP, and negative correlation with RDI and GM. The yield  in drought conditions (Ys) showed significant positive correlation with RDI and GM, and negative correlation with ATI and SSPI. None of the tolerance indices used could identify the high yielding hybrids under drought and non-stress conditions. Based on the ranking method, the hybrids ‘Felix’ and ‘P 9903’ were the most droughts tolerant. Therefore, they hybrids are recommended to be grown under drought prone areas and to be used as parents for breeding of drought tolerance in other cultivars.


2017 ◽  
Vol 62 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Reza Mohammadi ◽  
Abdolvahab Abdulahi

Objectives of this study were to assess durum wheat genotypes for drought tolerance and to study relationships among different drought tolerance indices under different drought stress conditions. The total of twenty-two durum wheat lines was evaluated in a RCBD experiment with three replications for three cropping seasons (2008-2009; 2009-2010 and 2010-2011). Different drought indices such as tolerance (TOL), mean productivity (MP), mean relative performance (MRP), stress susceptibility index (SSI), modified severity stress index (SSSI), geometric mean productivity (GMP), stress tolerance index (STI), yield stability index (YSI), relative efficiency index (REI) and drought response index (DRI) were determined based on yields under drought and non-drought conditions. The studied genotypes showed considerable variation in performance and tolerated various drought conditions that could be exploited in the durum wheat breeding program. The screening of genotypes for drought tolerance in environments with a greater value of stress intensity (SI) will be more efficient in the grouping of indices and genotype selection. The indices were classified into groups (G1 and G2). The group G1, which consisted of the indices REI, STI, MRP, GMP, DRI and YSI, distinguished genotypes with higher yield in different levels of drought stress. The durum breeding line nos. 1, 11, 10, 13, 8, 9, and 12 were superior based on the group G1 and could be regarded for further evaluation in drought-prone environments.


2018 ◽  
Vol 10 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Fereshteh JOKAR ◽  
Rahmatollah KARIMIZADEH ◽  
Asad MASOUMIASL ◽  
Reza AMIRI FAHLIANI

Durum wheat (Triticum durum L.) is used for the preparation of multiple food products, including pasta and bread. Its production is restricted due to diverse environmental stresses i.e. drought and heat stress. Here, comparative analysis of durum wheat varieties was done by studying canopy temperature depression (CTD) and chlorophyll content (CHL), yield and yield contributing traits to evaluate their performance under stress and low stress conditions. Twelve durum wheat genotypes were studied under stressful and low-stress conditions in Gachsaran region of Iran. CTD and CHL were measured at two stages, from the emergence of fifty percent of inflorescence (ZGS 54) to watery ripe stage (ZGS 71). According to stress tolerance index (STI), mean productivity (MP) and geometric mean productivity (GMP) indices, genotype G10 exhibited the most, while genotype G6, the least relative tolerance, respectively. Based on MP and GMP, genotype G10 was found to be drought tolerant, while genotype G2 displayed the lowest amount of MP and GMP. Therefore these genotypes are recommended to be used as genitors in artificial hybridization for improvement of drought tolerance in other cultivars. All indices had high correlation with grain yield under stress and non-stress condition, indicating more suitability of these indices for selection of resistant genotype. Results of the present study showed that among drought tolerance indices, harmonic mean (HM), GMP, CTD and modified STI index (K2STI) can be used as the most suitable indicators for screening drought tolerant cultivars.


Sign in / Sign up

Export Citation Format

Share Document