scholarly journals Grain yield and drought tolerance indices of maize hybrids

2020 ◽  
Vol 12 (2) ◽  
pp. 376-386
Author(s):  
Dorina BONEA

Drought is one of the major abiotic stress factors limiting crops production in Oltenia area, Romania. In order to study the response of six maize hybrids to drought stress, the trials were conducted in research field of ARDS Simnic – Craiova, during 2017-2018 (non-stressed conditions) and 2018-2019 (drought stress). Six tolerance indices including: abiotic tolerance index (ATI), stress susceptibility percentage index (SSPI), Stress tolerance index (STI), mean productivity (MP), relative drought index (RDI) and golden mean (GM), were utilized on the basis of grain yield. Results from analysis of variance showed that there is a significant difference in 1% of probability level among hybrids in terms of grain yield and tolerance indices. The yield in non-stress conditions (Yp) showed significant positive correlations with ATI, SSPI, STI and MP, and negative correlation with RDI and GM. The yield  in drought conditions (Ys) showed significant positive correlation with RDI and GM, and negative correlation with ATI and SSPI. None of the tolerance indices used could identify the high yielding hybrids under drought and non-stress conditions. Based on the ranking method, the hybrids ‘Felix’ and ‘P 9903’ were the most droughts tolerant. Therefore, they hybrids are recommended to be grown under drought prone areas and to be used as parents for breeding of drought tolerance in other cultivars.

Author(s):  
Alireza Daneshvar Hosseini ◽  
Ali Dadkhodaie ◽  
Bahram Heidari ◽  
Seyed Abdolreza Kazemeini

Wheat is the most important crop in the world which faces the global problem of drought. Its production is affected by water deficit after pollination in arid and semi-arid regions. An experiment was conducted to assess tolerance of 39 bread wheat genotypes to end-season drought. The experimental design was Randomized Complete Block in three replications and the drought tolerance indices (SSI, STI, TOL, MP and GMP) were calculated for grain yield. The cultivar Cambin produced the highest grain yield under normal irrigation by 369.19 g m-2 while Arina had the highest yield (223.35 g m-2) under drought stress conditions. Stress tolerance (TOL) introduced Hindukesh, Iran2355 and Iran6476 as drought tolerant genotypes. Also, results showed that grain yield under stress and non-stress environments were highly correlated with the mean productivity (MP), the geometric mean productivity (GMP) and tolerance index (TOL). These genotypes could be further used in crosses for genetic studies and breeding programs for improvement tolerance to drought.


2021 ◽  
Author(s):  
Md Habib ◽  
Md Mannan ◽  
Md Karim ◽  
Md Miah ◽  
Hari Singh

Abstract Crop productivity is greatly affected by drought stress. Understanding the drought tolerance capability of the crop varieties available in a country is the foremost consideration for drought adaptation. The objective of this research work was to examine the drought tolerance potentiality of 5 cultivated barley varieties (BARI Barley5, BARI Barley6, BARI Barley7, BARI Barley8 and BARI Barley9) through calculating drought tolerance indices. A completely randomized design (CRD) with three replications was followed in the experiment, where crops were grown under control (80% of FC) and water deficit environment (50% of FC). Stress Tolerance (TOL), Mean Productivity (MP), Geometric Mean Productivity (GMP), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Harmonic Mean (HAM), Yield Index (YI) and Yield Stability Index (YSI) were calculated based on grain yield under control and drought conditions. BARI Barley7 and BARI Barley8 were the most tolerant variety and BARI Barley9 considered as susceptible based on TOL and SSI. Drought tolerance indices like MP, HAM, GMP, TOL as well as STI were showed a high correlation with grain yield under both conditions and were recognized as appropriate indices to identify varieties with high grain yield and low sensitivity to drought stress.


2020 ◽  
Vol 115 (1) ◽  
pp. 105
Author(s):  
Sara KHOSRAVI ◽  
Reza AZIZINEZHAD ◽  
Amin BAGHIZADEH ◽  
Mahmood MALEKI

<p>This study was carried out on grain yield in wheat genotypes with the aim of assessing genetic potential of drought tolerance. The experiment was performed as split plot in the form of randomized complete block design with three replications under normal and drought stress conditions with 32 genotypes. Based on grain yield, and under the condition of non-stress and drought stress, 5 drought tolerance indices are estimated including Tolerance Index (TOL), Stress Tolerance (STI), Mean Productivity (MP), Geometric Mean (GMP) and, Harmonic Mean (HM) for all kinds of genotypes. The analysis of yield correlation and drought tolerance indices in two environments indicated that STI, MP, GMP, HM indices were the most suitable parameters for screening wheat genotypes. Principal components analysis exhibited that the 83 % of first principal component and the 15 % of second one justified the variation of the initial data. Drawing bi-plot diagram declared that Sabalan, Shabrang, Aria, Azar, Azadi, and T2 genotypes were highly functional and resistant to drought stress.</p>


2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Pooran GOLKAR ◽  
Esmaeil HAMZEH ◽  
Seyed Ali Mohammad MIRMOHAMMADY MAIBODY

<p>Improvement of elite safflower genotypes for drought-tolerance is hampered by a deficiency of effective selection criteria. The present study evaluated 100 genotypes of safflower in terms of their drought tolerance over a period of three years (2016–2018) under both non-stress and drought-stress conditions. The eight drought-tolerance indices of tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), stress tolerance index (STI), yield stability index (YSI), drought resistance index (DI), and harmonic mean (HARM) were calculated based on seed yield under drought (Y<sub>s</sub>) and non-drought (Y<sub>p</sub>) conditions. A high genetic variation was found in drought tolerance among the genotypes studied. The MP, GMP, and STI indices were able to discriminate between tolerant and drought-sensitive genotypes. Plots of the first and second principal components identified drought-tolerant genotypes averaged over the three study years. Cluster analysis divided the genotypes into three distinct groups using the drought tolerance indices. Ultimately, eight genotypes (namely, G<sub>3</sub>, G<sub>11</sub>, G<sub>13</sub>, G<sub>24</sub>, G<sub>33</sub>, G<sub>47</sub>, G<sub>58</sub>, and G<sub>61</sub>) from different origins were detected as more tolerant to drought stress suitable for use in safflower breeding programs in drought-affected areas. The most tolerant and susceptible genotypes could be exploited to produce mapping populations for drought tolerance breeding programs in safflower.</p>


2011 ◽  
Vol 3 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Mina ABARSHAHR ◽  
Babak RABIEI ◽  
Habibollah SAMIZADEH LAHIGI

In order to compare different rice genotypes grown under drought stress conditions a field experiment was conducted. In this study thirty different genotypes of native, breeded and upland cultivars were evaluated. Analysis of variance showed significant differences among genotypes in respect of all vegetative and morphological traits. Genotypes were devided into three groups by cluster analysis based on all studied traits with minimum variance method (Wards Method). The total average indicates significant differences among groups in respect of all morphological and physiological characteristics. In addition, eight drought stress tolerance indices including: sensitivity to stress index (SSI), drought response index (DRI), relative drought index (RDI), tolerance index (TOL), mean productivity index (MP), stress tolerance index (STI), geometric mean productivity index (GMP) and harmonic mean index (HM) were calculated according to their grain yield under drought stress and normal conditions. In general, results of this experimnet revealed that, among rice cultivars Domsephid, Deylamany, Hasansaraei, Sadri, Anbarboo and Domsiah had the highest sensitivity referring to drought stress and produced the lowest grain yield. Also, genotypes of IR24 (breeded of IRRI), Nemat, Sephidroud, Kadoos and Bejar (breeded of Iran) and Vandana, upland cultivar (originally from India) had the highest tolerance to drought stress and produced the highest grain yield. In conclusion, it was suggested that, these cultivars are suitable for drought stress conditions and are appropriate for hybridization with the aim of increasing drought tolerance.


2020 ◽  
Author(s):  
Soumya Kumar Sahoo ◽  
Goutam Kumar Dash ◽  
Arti Guhey ◽  
Mirza Jaynul Baig ◽  
Madhusmita Barik ◽  
...  

ABSTRACTRice production is severely threatened by drought stress in Eastern India. To develop drought tolerant varieties, selection of donors for breeding programme is crucial. Twenty one selected rice genotypes including both tolerant and sensitive to drought were grown under well-watered and drought stress conditions in dry seasons of two successive years of 2017 and 2018. Leaf water potential, relative water content displayed significant difference among the genotypes during vegetative screening. At reproductive stage drought screening, days to 50% flowering was delayed in all genotypes except N22 and Anjali (showed early flowering) however grain yield and other yield related traits decreased significantly compared to well watered condition. Correlation analysis of phenological and yield related traits with grain yield revealed that tiller numbers and panicle numbers are highly correlated with grain yield both under well-watered and water stress conditions and contributes maximum towards grain yield. The dendrogram grouped Mahamaya, Sahabhagidhan, Poornima, IBD 1, Hazaridhan, Samleshwari and Danteshwari into one cluster which performed better under water stress conditions and had grain yield more than 1.69 tha−1. Sahabhagidhan, Poornima, Vandana, and N22 displayed tolerance to drought both under vegetative and reproductive conditions which could be a good selection for the breeders to develop drought tolerant rice cultivars for eastern region of India.


2019 ◽  
Vol 113 (2) ◽  
pp. 337
Author(s):  
Seyyed Hamid Reza RAMAZANI ◽  
Ali IZANLOO

<p>The effects of drought stress on morphological and yield traits of six different genotypes of triticale along with wheat and barley were studied. The experiment was conducted in agricultural college of Sarayan, University of Birjand in 2016-2017 growing season. Experiment was a split-plot experiment based on randomized complete block design with drought stress in main plots and eight mentioned genotypes in subplots in three replications. Results of analysis of variance and means comparison analysis showed significant and negative effect of drought stress on grain yield and biological yield of all investigated genotypes. There was significant difference among investigated genotypes of triticale, wheat, and barley for grain yield under drought stress at 1 % probability level. Pazh genotype of triticale was found as the most drought tolerance genotype, among all investigated genotypes, based on almost all drought tolerance indexes. The highest significant correlation with grain yield was related to biological yield, harvest index, spike/shoot ratio, height and straw yield. GGE biplot analysis of genotypes based on their Yp and Ys showed that Pazh, Jualino, and Sanabad genotypes of triticale had more trends to Ys principal component than ET-89-11 line, wheat, and barley genotypes, therefore show more tolerance to drought stress.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 994
Author(s):  
Norain Jamalluddin ◽  
Festo J. Massawe ◽  
Sean Mayes ◽  
Wai Kuan Ho ◽  
Ajit Singh ◽  
...  

Amaranth (Amaranthus tricolor), an underutilized climate smart crop, is highly nutritious and possesses diverse drought tolerance traits, making it an ideal crop to thrive in a rapidly changing climate. Despite considerable studies on the growth and physiology of plants subjected to drought stress, a precise trait phenotyping strategy for drought tolerance in vegetable amaranth is still not well documented. In this study, two drought screening trials were carried out on 44 A. tricolor accessions in order to identify potential drought-tolerant A. tricolor germplasm and to discern their physiological responses to drought stress. The findings revealed that a change in stem biomass was most likely the main mechanism of drought adaptation for stress recovery, and dark-adapted quantum yield (Fv/Fm) could be a useful parameter for identifying drought tolerance in amaranth. Three drought tolerance indices: geometric mean productivity (GMP), mean productivity (MP) and stress tolerance index (STI) identified eight drought-tolerant accessions with stable performance across the two screening trials. The highly significant genotypic differences observed in several physiological traits among the amaranth accessions indicate that the amaranth panel used in this study could be a rich source of genetic diversity for breeding purposes for drought tolerance traits.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Álvaro de Oliveira Santos ◽  
Renzo Garcia Von Pinho ◽  
Vander Fillipe de Souza ◽  
Lauro José Moreira Guimarães ◽  
Márcio Balestre ◽  
...  

2013 ◽  
Vol 5 (3) ◽  
pp. 388-393 ◽  
Author(s):  
Mohhamad Reza NAGHAVI ◽  
Alireza POUR ABOUGHADAREH ◽  
Marouf KHALILI

In order to study the effect of drought stress on eight cultivars corn (Zea mays L.), an experiment was conducted in a factorial experimental on the basis of randomized complete block design under two irrigated conditions during 2010-2011 cropping season. Twelve drought tolerance/resistance indices including stress tolerance index (STI), stress susceptibility index (SSI), tolerance index (TOL), geometric mean production (GMP), mean production (MP), yield index (YI), yield stability index (YSI), drought resistance index (DI), relative drought index (RDI), stress susceptibility percentage index (SSPI) and modified stress tolerance (K1STI and K2STI) were calculated based on grain yield under drought and irrigated conditions. Yield in stress and non-stress conditions were significantly and positively correlated with STI, GMP, MP, YI, TOL, DI, RDI, YSI, SSPI, K1STI, and K2STI and negatively correlated with SSI. Yield in stress and non-stress conditions were significantly and positively correlated with STI, GMP, MP, YI, TOL, DI, RDI, YSI, SSPI, K1STI, and K2STI and negatively correlated with SSI. Screening drought tolerant cultivars using ranking method, three dimensional plots discriminated cultivars ‘KSC720’, KSC 710GT and ‘KSC 700’ as the most drought tolerant. Cluster analysis classified the cultivars into three groups i.e., tolerant, susceptible and semi-susceptible to drought conditions. In general, Results of this study showed that among drought tolerance indices STI, YI, SSPI, K1STI, and K2STI can be used as the most suitable indicators for screening drought tolerant cultivars and ‘KSC720’, KSC 710 GT and ‘KSC 700’ had the highest tolerance to drought in our studies condition.


Sign in / Sign up

Export Citation Format

Share Document