scholarly journals Integrated Approach to Reserve Estimation and Reservoir Simulation of ENI Offshore Field, in Niger Delta Nigeria

Author(s):  
J. O. Ayorinde ◽  
O. O. Osinowo ◽  
P. Nwankwo

Two producing reservoirs (H10 and E40) in Eni field Offshore Niger Delta were studied with intent to enhance their rate of recovery while mitigating water production. The material Balance software MBAL was used to estimate the Stock tank oil reserves and then compared to reserve estimates determined by both deterministic and stochastic techniques for improved validation. The MBAL model was also used to identify positions of fluid contacts and determine predominant drive mechanisms. These serve as guide in making informed decisions towards if and how best to economically produce remaining unproduced oil in place. Input parameters were average values derived from core and well logs analyses. History matching of historical data enabled forecasts of possible future production life and volume at multiple scenarios. Final outcomes show that after sixteen and forty five years of continuous  production from the reservoirs studied (H10 and E40, respectively), remaining unproduced oil in place are still significant and can be economically produced by infill wells, which will in return increase the average production by nothing less than 33% of remaining oil in place, a substantial value bearing in mind the growing demand for oil, gas  and other energy sources to lessen the apparently unquenchable world energy needs.

2021 ◽  
Author(s):  
Christian Ihwiwhu ◽  
Ibi-Ada Itotoi ◽  
Udeme John ◽  
Nnamdi Obioha ◽  
Precious Okoro ◽  
...  

Abstract Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study evaluated selected reservoirs in Ovhor Field, Niger Delta, Nigeria with the objective of optimising production from the field by targeting undeveloped oil reserves or bypassed pay and gaining an improved understanding of the selected reservoirs to increase the company's reserves limits. The task at the Ovhor field, is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (Sedimentology and stratigraphy) interpretation, Quantitative interpretation results and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model was constructed in such a way as to capture heterogeneities and the various compartments in the field. This was crucial to aid the simulation of fluid flow in the field for proper history matching, future production, prediction and design of well trajectories to adequately target undeveloped oil in the field. Reservoir property models (Porosity, Permeability and Net-To-Gross) were constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captured the heterogeneities expected in the studied reservoirs. At least, two scenarios were modelled for the studied reservoirs to capture the range of uncertainties. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities included side-tracking and re-perforation of existing wells. New wells have been drilled to test the results of our studies and the results confirmed our findings.


2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


2016 ◽  
Vol 4 (2) ◽  
pp. 28 ◽  
Author(s):  
Sunmonu Ayobami ◽  
Adabanija Adedapo ◽  
Adagunodo Aanuoluwa ◽  
Adeniji Ayokunnu

Hydrocarbon resources have become the most essential commodity contributing to any nation’s growth and development in the recent years. For the past decades now, the quest for hydrocarbon resources has been increasing in an arithmetic rate that its supply can no longer meets the demand for its consumption today. In petroleum industry, seismic and well log analyses play a vital role in oil and gas exploration and formation evaluation. This study is aimed to effectively characterize the reservoirs and analyze the by-passed pay in Philus Field, Niger-Delta, Nigeria in order to look into the economic viability and profitability of the volume of oil in the identified reservoir(s). The faults in the study area trend in NW-SE direction and dip towards the south. Seven reservoirs were mapped on Philus field. A discovery trap and a by-passed (new prospect) trap were mapped out on the field. The petrophysical analysis showed that porosity of Philus field was 0.24. The volumetric analysis showed that the Stock Tank Original Oil in Place of discovery trap (Philus field) ranged from 1.6 to 43.1 Mbbl while that of new prospect trap ranged from 18.1 to 211.3 Mbbl. It is recommended that the oil reserve of Philus field needs to be recalculated.


2019 ◽  
Vol 8 (4) ◽  
pp. 1484-1489

Reservoir performance prediction is important aspect of the oil & gas field development planning and reserves estimation which depicts the behavior of the reservoir in the future. Reservoir production success is dependent on precise illustration of reservoir rock properties, reservoir fluid properties, rock-fluid properties and reservoir flow performance. Petroleum engineers must have sound knowledge of the reservoir attributes, production operation optimization and more significant, to develop an analytical model that will adequately describe the physical processes which take place in the reservoir. Reservoir performance prediction based on material balance equation which is described by Several Authors such as Muskat, Craft and Hawkins, Tarner’s, Havlena & odeh, Tracy’s and Schilthuis. This paper compares estimation of reserve using dynamic simulation in MBAL software and predictive material balance method after history matching of both of this model. Results from this paper shows functionality of MBAL in terms of history matching and performance prediction. This paper objective is to set up the basic reservoir model, various models and algorithms for each technique are presented and validated with the case studies. Field data collected related to PVT analysis, Production and well data for quality check based on determining inconsistencies between data and physical reality with the help of correlations. Further this paper shows history matching to match original oil in place and aquifer size. In the end conclusion obtained from different plots between various parameters reflect the result in history match data, simulation result and Future performance of the reservoir system and observation of these results represent similar simulation and future prediction plots result.


2021 ◽  
Vol 447 (3) ◽  
pp. 18-24
Author(s):  
D.B. Augaliev ◽  
M.K. Erkibaeva ◽  
A.O. Aidarova ◽  
S.А. Tungatarova ◽  
T.S. Baizhumanova

The world's oil reserves are decreasing every day due to the continuous production and processing of the most modern technologies. Scientists all over the world are looking for various raw materials and methods to use the vast resources of natural gas as a substitute for petrochemicals. In this regard, great attention is drawn to natural gas as an alternative source of raw materials for petrochemical industries. The purpose of this work is to study the reaction of methane dehydrogenation on new 20%La-10%Ce20%Mg-50% glycine catalysts prepared by the SHS method to identify the optimal conditions for their preparation, concentration and ratio of metals, the influence of contact time and process temperature on the direction and mechanism of the reaction. The results of the study of 20% La-10% Ce-20% Mg-50% glycine catalyst prepared by the SHS method in the process of oxidative dehydrogenation of methane into C2 hydrocarbons are presented. On the basis of experimental studies, it was found that the composition of the catalyst exhibits high activity in the above reaction under the found optimal conditions. Thus, the influence of reaction temperature on the developed composition of catalysts for oxidative conversion of methane has been determined that the optimum temperature for the selective formation of ethane and ethylene is T=700o С. It was found that for selective oxidation of a mixture of CH4: O2 : Ar in C2 hydrocarbons the optimal conditions are: T=700o С, CH4:O2=2,5:1, 5000 h-1.


2021 ◽  
Author(s):  
Emily Ako ◽  
Erasmus Nnanna ◽  
Odumodu Somtochukwu ◽  
Akinmade Moradeke

Abstract Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.


2021 ◽  
Author(s):  
M. A. Borregales Reverón ◽  
H. H. Holm ◽  
O. Møyner ◽  
S. Krogstad ◽  
K.-A. Lie

Abstract The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) method has been popular for petroleum reservoir history matching. However, the increasing inclusion of automatic differentiation in reservoir models opens the possibility to history-match models using gradient-based optimization. Here, we discuss, study, and compare ES-MDA and a gradient-based optimization for history-matching waterflooding models. We apply these two methods to history match reduced GPSNet-type models. To study the methods, we use an implementation of ES-MDA and a gradient-based optimization in the open-source MATLAB Reservoir Simulation Toolbox (MRST), and compare the methods in terms of history-matching quality and computational efficiency. We show complementary advantages of both ES-MDA and gradient-based optimization. ES-MDA is suitable when an exact gradient is not available and provides a satisfactory forecast of future production that often envelops the reference history data. On the other hand, gradient-based optimization is efficient if the exact gradient is available, as it then requires a low number of model evaluations. If the exact gradient is not available, using an approximate gradient or ES-MDA are good alternatives and give equivalent results in terms of computational cost and quality predictions.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1508-1525
Author(s):  
Mengbi Yao ◽  
Haibin Chang ◽  
Xiang Li ◽  
Dongxiao Zhang

Summary Naturally or hydraulically fractured reservoirs usually contain fractures at various scales. Among these fractures, large-scale fractures might strongly affect fluid flow, making them essential for production behavior. Areas with densely populated small-scale fractures might also affect the flow capacity of the region and contribute to production. However, because of limited information, locating each small-scale fracture individually is impossible. The coexistence of different fracture scales also constitutes a great challenge for history matching. In this work, an integrated approach is proposed to inverse model multiscale fractures hierarchically using dynamic production data. In the proposed method, a hybrid of an embedded discrete fracture model (EDFM) and a dual-porosity/dual-permeability (DPDP) model is devised to parameterize multiscale fractures. The large-scale fractures are explicitly modeled by EDFM with Hough-transform-based parameterization to maintain their geometrical details. For the area with densely populated small-scale fractures, a truncated Gaussian field is applied to capture its spatial distribution, and then the DPDP model is used to model this fracture area. After the parameterization, an iterative history-matching method is used to inversely model the flow in a fractured reservoir. Several synthetic cases, including one case with single-scale fractures and three cases with multiscale fractures, are designed to test the performance of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document