scholarly journals Comparison of Three Artificial Lift Operations in the Niger Delta

Author(s):  
Chinedu I. Ndubuka ◽  
Julius U. Akpabio

More than 70% of oil-producing wells require some form of artificial lift to increase the flow of fluids from subsurface to the surface when a reservoir no longer has sufficient energy to produce at economic rates. This situation has been observed in the Niger Delta oil wells over the past years and has caused the abandonment of reservoirs with a significant volume of  hydrocarbon. Data from two oil wells that could not flow naturally to the surface have been  obtained from an oil company operating in the Niger Delta. The arm of this study is to optimize the  production of two oil wells using an artificial lift system. To increase production and extend the life of these wells, artificial lift projects were considered. This was done with the aid of Integrated   Production Modelling (IPM) tool in Petroleum Expert suite. Two wells were simulated using the obtained data, and their production performances were evaluated. The well’s   production outputs were optimized using artificial lift systems, that is electric submersible pump (ESP), hydraulic pump (HP), and gas lift (GL). The results obtained showed that the ESP wells have the highest oil production rate compared to GL and HP respectively. An economic analysis was carried out using Net Present Value (NPV), Profitability Index (PI) and Internal Rate of Return (IRR). In terms of economic comparison, ESP is the most viable project  with the highest NPV, PI and IRR Hence, the ESP technology proved to be the best technology for sustaining a high production rate, increasing revenue and proved to be economically viable in Niger Delta oil fields.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. V. Suryanarayana

AbstractA new photoionization scheme accessible by Rhodamine dye lasers is proposed for the isotope separation of 176Lu.$$5d6s^{2}\,{^{2}D_{{3/2}}} (0.0\, {\text{cm}}^{{ - 1}} )\mathop{\longrightarrow}\limits^{{573.8130\, {\text{nm}}}}5d6s6p\,{^{4}F_{{3/2}}^{o}} \left( {17427.28\, {\text{cm}}^{{ - 1}} } \right)\mathop{\longrightarrow}\limits^{{560.3114\, {\text{nm}}}}$$ 5 d 6 s 2 2 D 3 / 2 ( 0.0 cm - 1 ) ⟶ 573.8130 nm 5 d 6 s 6 p 4 F 3 / 2 o 17427.28 cm - 1 ⟶ 560.3114 nm $$6s{6p}^{2}\,{^{4}{P}_{5/2}}\left(35274.5 \,{\text{cm}}^{-1}\right){\to } Autoionization\, State {\to }{Lu}^{+}$$ 6 s 6 p 2 4 P 5 / 2 35274.5 cm - 1 → A u t o i o n i z a t i o n S t a t e → Lu + Optimum conditions for the laser isotope separation have been theoretically computed and compared with the previously reported work. The enrichment of ~ 63% can be obtained with > 22 mg/h production rate even when broadband lasers with bandwidth of 500 MHz are employed for the two step excitation. The simplified system requirements for the photoionization scheme combined with a high production rate of 176Lu than previously reported is expected to reduce the global shortage of 176Lu isotope for medical applications.


Languages ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Emanuela Sanfelici ◽  
Petra Schulz

There is consensus that languages possess several grammatical variants satisfying the same conversational function. Nevertheless, it is a matter of debate which principles guide the adult speaker’s choice and the child’s acquisition order of these variants. Various proposals have suggested that frequency shapes adult language use and language acquisition. Taking the domain of nominal modification as its testing ground, this paper explores in two studies the role that frequency of structures plays for adults’ and children’s structural choices in German. In Study 1, 133 three- to six-year-old children and 21 adults were tested with an elicited production task prompting participants to identify an agent or a patient referent among a set of alternatives. Study 2 analyzed a corpus of child-directed speech to examine the frequency of passive relative clauses, which children, similar to adults, produced very often in Study 1. Importantly, passive relatives were found to be infrequent in the child input. These two results show that the high production rate of rare structures, such as passive relatives, is difficult to account for with frequency. We claim that the relation between frequency in natural speech and use of a given variant in a specific context is indirect: speakers may opt for the less grammatically complex computation rather than for the variant most frequently used in spontaneous speech.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
R. L. J. Fernandes ◽  
B. A. Fleck ◽  
T. R. Heidrick ◽  
L. Torres ◽  
M. G. Rodriguez

Experimental investigation of drag reduction in vertical two-phase annular flow is presented. The work is a feasibility test for applying drag reducing additives (DRAs) in high production-rate gas-condensate wells where friction in the production tubing limits the production rate. The DRAs are intended to reduce the overall pressure gradient and thereby increase the production rate. Since such wells typically operate in the annular-entrained flow regime, the gas and liquid velocities were chosen such that the experiments were in a vertical two-phase annular flow. The drag reducers had two main effects on the flow. As expected, they reduced the frictional component of the pressure gradient by up to 74%. However, they also resulted in a significant increase in the liquid holdup by up to 27%. This phenomenon is identified as “DRA-induced flooding.” Since the flow was vertical, the increase in the liquid holdup increased the hydrostatic component of the pressure gradient by up to 25%, offsetting some of reduction in the frictional component of the pressure gradient. The DRA-induced flooding was most pronounced at the lowest gas velocities. However, the results show that in the annular flow the net effect will generally be a reduction in the overall pressure gradient by up to 82%. The findings here help to establish an envelope of operations for the application of multiphase drag reduction in vertical flows and indicate the conditions where a significant net reduction of the pressure gradient may be expected.


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


2018 ◽  
Vol 200 (12) ◽  
pp. 4059-4067 ◽  
Author(s):  
Ziyuan He ◽  
Carolina Allers ◽  
Chie Sugimoto ◽  
Nursarat Ahmed ◽  
Hideki Fujioka ◽  
...  

2006 ◽  
Vol 445-448 ◽  
pp. 553-557
Author(s):  
Ryo Teranishi ◽  
Sukeharu Nomoto ◽  
Junko Matsuda ◽  
Yuji Aoki ◽  
Koichi Nakaoka ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Yen-Chun Lu ◽  
Wei Song ◽  
Duo An ◽  
Beum Jun Kim ◽  
Robert Schwartz ◽  
...  

Compartmentalized hydrogel microparticles with high production rate, uniform size and shape, and tunable ECM support were developed for various scalable 3D cell culture applications.


Author(s):  
Gabriel A. Alarcón ◽  
Carlos F. Torres-Monzón ◽  
Nellyana Gonzalo ◽  
Luis E. Gómez

Abstract Continuous flow gas lift is one of the most common artificial lift method in the oil industry and is widely used in the world. A continuous volume of gas is injected at high pressure into the bottom of the tubing, to gasify the oil column and thus facilitate the extraction. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply also reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a MATLAB™ nonlinear optimization technique with constraints was implemented to find the optimal gas injection rates. A new mathematical fit to the “Gas-Lift Performance Curve” is presented and the numeric results of the optimization are given and compared with results of other methods published in the specialized literature. The optimization technique proved fast convergence and broad application.


Sign in / Sign up

Export Citation Format

Share Document