scholarly journals Comparative Review of Plant Transformation Techniques

Author(s):  
A. O. Okpe ◽  
F. A. Nkaa

Plant transformation is now an important biotechnological tool in plant biology and a practical tool for transgenic plant development. There are many verified methods for stable introduction of novel genes into the nuclear genomes of diverse plant species. As a result, gene transfer and regeneration of transgenic plants are no longer the factors limiting the development and application of practical transformation systems for many plant species. However, the desire for higher transformation efficiency has stimulated work on not only improving various existing methods but also in inventing novel methods. Different methods of transferring the gene into plant cells have been developed and continuous efforts have been made to increase its efficiency. Both direct and indirect methods of gene transfer have their own merits and demerits. Efforts have been made continuously to eliminate drawbacks and to develop an easy and eco-friendly method to transfer foreign genes. Many methods of genetic transformation have been proposed and tried in the laboratories, but most of them result to transient expressions. However, transformation work based on particle bombardment with DNA coated micro projectiles and Agrobacterium mediated transformation have proved to be promising in producing stable transgenic plants from a range of plant species.

2020 ◽  
Vol 8 (7) ◽  
pp. 1056
Author(s):  
Cody Molnar ◽  
Ekaterina Nikolaeva ◽  
Seonghwan Kim ◽  
Tracey Olson ◽  
Devin Bily ◽  
...  

The increasing movement of exotic pathogens calls for systematic surveillance so that newly introduced pathogens can be recognized and dealt with early. A resource crucial for recognizing such pathogens is knowledge about the spatial and temporal diversity of endemic pathogens. Here, we report an effort to build this resource for Pennsylvania (PA) by characterizing the identity and distribution of Phytophthora species isolated from diverse plant species in PA nurseries and greenhouses. We identified 1137 Phytophthora isolates cultured from clinical samples of >150 plant species submitted to the PA Department of Agriculture for diagnosis from 1975 to 2019 using sequences of one or more loci and morphological characteristics. The three most commonly received plants were Abies, Rhododendron, and Pseudotsuga. Thirty-six Phytophthora species identified represent all clades, except 3 and 10, and included a distinct subgroup of a known species and a prospective new species. Prominent pathogenic species such as P. cactorum, P. cinnamomi, P. nicotianae, P. drechsleri, P. pini, P. plurivora, and P. sp. kelmania have been found consistently since 1975. One isolate cultured from Juniperus horizontalis roots did not correspond to any known species, and several other isolates also show considerable genetic variation from any authentic species or isolate. Some species were isolated from never-before-documented plants, suggesting that their host range is larger than previously thought. This survey only provides a coarse picture of historical patterns of Phytophthora encounters in PA nurseries and greenhouses because the isolation of Phytophthora was not designed for a systematic survey. However, its extensive temporal and plant coverage offers a unique insight into the association of Phytophthora with diverse plants in nurseries and greenhouses.


Euphytica ◽  
1995 ◽  
Vol 85 (1-3) ◽  
pp. 63-74 ◽  
Author(s):  
Hélène Laparra ◽  
Monique Burrus ◽  
Reiner Hunold ◽  
Brigitte Damm ◽  
Ana Maria Bravo-Angel ◽  
...  

2015 ◽  
Vol 16 (1) ◽  
pp. 29-30 ◽  
Author(s):  
Carlye A. Baker ◽  
Scott Adkins

To the best of our knowledge, this is the first report of TCSV infection of H. wayetii and S. truncata from any location, although other tospoviruses are known to infect these and related plant species. The identification of these two diverse plant species as the first reported natural ornamental hosts of TCSV has implications for TCSV epidemiology and management in ornamental and vegetable crops, which frequently share production space. Accepted by publication 15 January 2015. Published 25 February 2015.


2014 ◽  
Vol 83 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Maria Virginia Sanchez-Puerta

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.


Aquaculture ◽  
2013 ◽  
Vol 388-391 ◽  
pp. 60-69 ◽  
Author(s):  
Iciar Muñoz ◽  
Silvia Zanuy ◽  
María José Mazón ◽  
Manuel Carrillo ◽  
Ana Gómez

Sign in / Sign up

Export Citation Format

Share Document