scholarly journals Influence of Bradyrhizobium and Mycorrhiza on Growth, Yield and Phosphorus Use Efficiency on Soybean under Manure Application

2017 ◽  
Vol 3 (3) ◽  
pp. 1-11
Author(s):  
M Adigun ◽  
O Babalola
2011 ◽  
Vol 34 (8) ◽  
pp. 1223-1235 ◽  
Author(s):  
M. Akhtar ◽  
Shermeen Tahir ◽  
M. Y. Ashraf ◽  
J. Akhter ◽  
S. M. Alam

HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 381-385 ◽  
Author(s):  
Fred T. Davies ◽  
Constantino M. Calderón ◽  
Zosimo Huaman

The influence of arbuscular mycorrhizal fungi (AMF) [two Peruvian mixed isolates, a pure isolate of Glomus intraradices] and the flavonoid, formononetin, were tested on growth, yield, and leaf elemental concentration of the Peruvian potato (Solanum tuberosum L.) `Yungay'. Plants started from tissue culture-produced prenuclear minitubers of `Yungay' were subjected to seven treatments, which included noncolonized (non-AMF) plants fertilized with Long Ashton nutrient solution modified to supply P at 11 and 44 μg·mL-1. All AMF plants received low P (11 μg·mL-1) and were inoculated with either a sierra-maize mixed isolate, sierra-papa mixed isolate, pure isolate of G. intraradices, sierra-maize mixed isolate + formononetin, or a sierra-papa mixed isolate + formononetin. Plants were grown in 3-L containers under shade house conditions in Lima, Peru. Non-AMF plants at low P had the poorest growth, while high P plants had the greatest overall growth. All AMF plants had greater growth, including a higher root to shoot ratio, higher phosphorus use efficiency [(g tuber)/(g P/kg tissue)], and a lower leaf to tuber ratio (indicating greater leaf efficiency in producing tuber dry matter), compared to non-AMF plants at low P. The mycorrhizal inoculation effect (MIE) ranged from +44% to +57%, indicating that `Yungay' was moderately to highly mycorrhizal dependent. Plants colonized with the sierra-papa isolate + formononetin had the same tuber development and leaf to tuber ratio, compared to high P, non-AMF plants. Formononetin increased extraradical hyphae formation. Mycorrhizal enhancement was in part due to greater P, Fe, and Mg uptake, a higher phosphorus-use efficiency and greater extraradical hyphae formation.


2010 ◽  
Vol 33 (14) ◽  
pp. 2167-2181 ◽  
Author(s):  
N. K. Fageria ◽  
V. C. Baligar ◽  
A. Moreira ◽  
T. A. Portes

2016 ◽  
Vol 5 (07) ◽  
pp. 4694 ◽  
Author(s):  
Viliana Vasileva ◽  
Anna Ilieva

In pot trial the biochemical composition and phosphorus use efficiency of birdsfoot trefoil, sainfoin and subterranean clover grown pure and in mixtures with perennial ryegrass in the next ratios were studied in the Institute of Forage Crops, Pleven, Bulgaria: birdsfoot trefoil + perennial ryegrass (50:50%); sainfoin + perennial ryegrass (50:50%); subterranean clover + perennial ryegrass (50:50%); birdsfoot trefoil + subterranean clover + perennial ryegrass (33:33:33%); sainfoin + subterranean clover + perennial ryegrass (33:33:33%). The highest crude protein content was found in the aboveground mass of birdsfoot trefoil (19.17%) and sainfoin (19.30%). The water soluble sugars contents in mixtures was found higher compared to the pure grown legumes. Birdsfoot trefoil showed the highest phosphorus use efficiency for plant biomass accumulation and nodules formation. In mixtures the phosphorus use efficiency was found be higher as compared to the same in pure grown legumes.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Qiuju He ◽  
Fei Wang ◽  
Yan Wang ◽  
Hong Lu ◽  
Zhili Yang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Sign in / Sign up

Export Citation Format

Share Document