QSAR Study of Nickel-Schiff Base Complexes as Anti-bacterial Agents against Staphylococcus aureus

2015 ◽  
Vol 4 (4) ◽  
pp. 1-18
Author(s):  
J Ameji ◽  
A Uzairu ◽  
S Idris
Author(s):  
Pooi Yin Chung ◽  
Ranon Earn Yueh Khoo ◽  
Hui Shan Liew ◽  
May Lee Low

Abstract Background Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line. Methods The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay. Results The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells. Conclusion Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.


2008 ◽  
Vol 19 (5) ◽  
pp. 749-755 ◽  
Author(s):  
Mahmut Ulusoy ◽  
Hasan Karabıyık ◽  
Rafet Kılınçarslan ◽  
Muhittin Aygün ◽  
Bekir Çetinkaya ◽  
...  

2021 ◽  
Vol 1232 ◽  
pp. 129975
Author(s):  
Murat Tuna ◽  
Salih Zeki Yildiz ◽  
Gulnur Arabaci ◽  
Zeynep Denli ◽  
Nagihan Çaylak Delibaş ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 772-784
Author(s):  
Moamen S. Refat ◽  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Mohamed I. Kobeasy ◽  
Rozan Zakaria ◽  
...  

Abstract This article aimed at the synthesis and molecular docking assessment of new diimine Schiff base ligand, namely 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxyvinyl)hydrazono) methyl)-6-methoxyphenol (methoxy-diim), via the condensation of 1-(4-chloro-phenyl)-2-hydrazino-ethenol compound with 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxy vinyl) hydrazono)methyl)-6-methoxyphenol in acetic acid as well as the preparation of new binuclear complexes of Co(ii), Ni(ii), Cu(ii), and Zn(ii). The following synthesized complexes were prepared in a ratio of 2:1 (metal/ligand). The 1H-NMR, UV-Vis, and FTIR spectroscopic data; molar conductivity measurements; and microanalytical, XRD, TGA/DTG, and biological studies were carried out to determine the molecular structure of these complexes. According to the spectroscopic analysis, the two central metal ions were coordinated with the diamine ligand via the nitrogen of the hydrazine and oxygen of the hydroxyl groups for the first metal ions and via the nitrogen of the hydrazine and oxygen of the phenol group for the second metal ions. Molecular docking for the free ligand was carried out against the breast cancer 3hb5-oxidoreductase and the 4o1v-protein binding kidney cancer and COVID-19 protease, and good results were obtained.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Shouvik Chattopadhyay ◽  
Tanmoy Basak ◽  
Antonio Frontera

Two mononuclear iron(III) complexes, [FeL1Cl]∙CH3CN (1) and [FeL2(N3)] (2) {H2L1= N,N′-bis(5-chlorosalicylidene)diethylenetriamine and H2L2= N,N′-bis(5-bromosalicylidene)diethylenetriamine}, have been synthesized and characterized by X-ray crystallographic studies. In the solid state, there are strong...


2021 ◽  
Author(s):  
Santo Di Bella

In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and...


Sign in / Sign up

Export Citation Format

Share Document