scholarly journals Antimicrobial Activity of Methanolic, Aqueous and Partially Purified Protein of Young and Matured Leaves of Guiera senegalensis (Moshi Medicine)

Author(s):  
M. K. Jiyil ◽  
C. E. Mafuyai ◽  
M. I. Shago ◽  
H. M. Inuwa

Background: Microorganisms have evolved defence mechanisms against antimicrobial agents and have become resistant to some antibiotics. Aim of the Study: This study aimed to evaluate the antimicrobial activity of methanol as well as that of the aqueous and partially purified protein of   young and matured leaves of Guiera senegalensis. Study Duration: This study was conducted on 30th January, 2015 at the Department of Biochemistry, Faculty of Science, Ahmadu  Bello University Zaria, Nigeria. Methodology: Antimicrobial activity was determined using disc diffusion and broth dilution techniques, Gel chromatography techniques were used to fractionate the crude protein. Results: The Test isolates were Bacillus subtilis, Staphylococcus aureus, E. coli, Salmonella typhimurium and Candida albicans. All the extracts were sensitive to most of the isolates except Candida albican (fungus). The crude and partially purified proteins were active against the Gram positive bacteria. The maximum zone of inhibition (42.00±1.00 mm) was observed in the methanol extract of a young leaf against Staphylococcus aureus at 100 mg/ml. The methanol extracts exhibited minimum inhibitory concentration (MIC) at a range of 6.25 mg/ml and 12.5 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml and 25 mg/ml. The young leaf was more active than the matured leaf. Quantitative phytochemicals showed high amounts of saponins (26.20% and 19.66%) in matured and young leaves respectively. Conclusion: This research justifies the traditional claim of Guiera senegalensis leaves for therapeutic purposes. The leaves can be used to remedy diseases caused by bacterial agents.

2014 ◽  
Vol 44 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Carolinie Batista Nobre da Cruz ◽  
Fabio Alessandro Pieri ◽  
Gislene Almeida Carvalho-Zilse ◽  
Patrícia Puccinelli Orlandi ◽  
Carlos Gustavo Nunes-Silva ◽  
...  

Honeys are described possessing different properties including antimicrobial. Many studies have presented this activity of honeys produced by Apis mellifera bees, however studies including activities of stingless bees honeys are scarce. The aim of this study was to compare the antimicrobial activity of honeys collected in the Amazonas State from Melipona compressipes, Melipona seminigra and Apis mellifera against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Chromobacterium violaceum, and Candida albicans. Minimum inhibitory concentrations were determined using the agar dilution method with Müller-Hinton agar (for bacteria) or Saboraud agar (for yeast). Staphylococcus aureus and E. faecalis were inhibited by all honeys at concentrations below 12%, while E. coli and C. violaceum were inhibited by stingless bee honeys at concentrations between 10 and 20%. A. mellifera honey inhibited E. coli at a concentration of 7% and Candida violaceum at 0.7%. C. albicans were inhibited only with honey concentrations between 30 and 40%. All examined honey had antimicrobial activity against the tested pathogens, thus serving as potential antimicrobial agents for several therapeutic approaches.


2012 ◽  
Vol 550-553 ◽  
pp. 1030-1038
Author(s):  
Peng Li ◽  
Wei Guo Wang ◽  
Yu Jia Cui ◽  
Yong Liang Zhao ◽  
Ya Nan Gu ◽  
...  

Purpose To develop a novel complex antimicrobial agent and determine the optimal components of the composite antimicrobial agents and its antimicrobial activity in vitro. Methods According to antimicrobial mechanisms,antibacterial spectrums,physical and chemical properties and applicabilities of existing antimicrobial agents in clinical use, select out cefoperazone sodium, sulbactam sodium and cephradine as the basic components to make a novel complex antimicrobial agent. Utilize yeast, staphylococcus aureus and E. coli bacteria as test bacteria. Do the three factors four-level orthogonal experiments by the maximum amount, the middle amount, low amount and Minimum amount of the three-component agent to research the optimum ratio of the drug. Measure the titer of the compound antimicrobial agent by the way of tube-plate method (2 doses). With known contents of Penicillin Sodium for Injection as control, and determine its minimum inhibitory concentration against staphylococcus aureus, E. coli and yeast by using the agar doubling dilution method. The experimental results were analysized by statistical analysis software SPSS16.0. Results The results of the three factors four-level orthogonal experiments indicate the optimum ratios of Cefoperazone Sodium, Sulbactam Sodium and Cephradine against E. coli, yeast and staphylococcus aureus were 2:2:3, 1:2:2 and 2:6:5, their titers were 1353.9U/mg, 982.7U/mg and 1015.5U/mg. With the highest titer proportion 2:2:3 as the composition of the antimicrobial compound. This compound antimicrobial agent had a good antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria and Fungi, its minimal inhibitory concentration (MIC) against staphylococcus aureus, E. coli and yeast were 2.000μg/ml, 0.500μg/ml and 16.000μg/ml. Conclusion This research acquires a composite of antibiotics. This antimicrobial compound has a broader spectrum and higher antimicrobial activity in vitro comparing with traditional common single antibiotics, and it especially has a good antimicrobial activity against fungi. The results set a scientific foundation for enriching clinical medicines.


Author(s):  
Abu- Safieh Rana ◽  
Muhi- Eldeen Zuhair ◽  
Alsarahni Aseel ◽  
Al-Kaissi Elham

A new series of 7-methoxy-2-[4-(t-amino-1-yl)oxy]-naphthalene derivatives; 7-methoxy-2-{[4-(2-methylpiperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ2), 7-methoxy-2-{[4-(2,6-dimethylpiperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ3), 7-methoxy-2{[4-(piperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ4), 7-methoxy-2-{[4-(pyrrolidine)but-2-yn-1-yl]oxy}-naphthalene (RZ5), 7-methoxy-2-{[4-(N-methylpiperazine)but-2-yn-1-yl]oxy}-naphthalene (RZ6), 7-methoxy -2-{[4-(hexamethyleneimine)but-2-yn-1-yl]oxy}-naphthalene (RZ7) were synthesized and screened in vitro as potential antimicrobial agents. Antimicrobial activity were evaluated by measuring the minimum inhibitory and bactericidal/fungicidal concentration (MIC, MBC and MFC). RZ2, RZ5, RZ6 and RZ7 showed the highest antimicrobial activity against S. aureus with MIC value 62.5 µg/ml, compounds RZ2, RZ4, RZ5, and RZ7 have the highest antimicrobial activity against B. subtilis with MIC vale 62.5 µg/ml, RZ3, RZ6 have the same antimicrobial activity with MIC value 125µg/ml, compounds. RZ4, RZ5, RZ6 and RZ7 have the highest antimicrobial activity against E. coli with MIC value 125 µg/ml, all compounds have the same MIC value against P. aeruginosa (125 µg/ml). RZ2, RZ4, RZ5, RZ6, RZ7 showed the highest antifungal activity with MIC of 62.5 µg/ml. In conclusion, the synthesized compounds showed good antimicrobial activity and promising potency against gram positive bacteria, gram negative bacteria and fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ramesh S. Yamgar ◽  
Y. Nivid ◽  
Satish Nalawade ◽  
Mustapha Mandewale ◽  
R. G. Atram ◽  
...  

The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria:E. coliandPseudomonas fluorescens, Gram positive bacteria:Staphylococcus aureus,and also against fungi, that is,C. albicansandA. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents againstC. albicansandA. niger.


2019 ◽  
Vol 15 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Rakesh Kumar ◽  
Shailendra Patil

Background:Diseases caused by microbial infections are very common worldwide. Although the search of innovative antimicrobial agents is the current focus for the researchers, the treatment of infectious diseases remains an important public health issue and a challenging problem in front of medicinal chemist.Methods:A series of 2-(4-hydroxyphenyl)-3-(4-(4-nitrophenyl) thiazol-2-yl)thiazolidin-4-one derivatives (T1-T10) was designed and synthesized. All the titled compounds were evaluated for their antimicrobial potential. Antimicrobial activity was performed by tube dilution methods against Gram negative Escherichia coli MTCC 443 (E. Coli), Gram positive bacteria: Staphylococcus aureus MTCC 3160 (S. aureus) and Bacillus subtilis MTCC 441 (B. Subtilis), and fungal strains: Aspergillus niger MTCC 281 (A. niger) and Candida albicans MTCC 227 (C. albicans).Results:Among the synthesized derivatives, compounds 2, 4 and 10 were found to be most active antimicrobial agents.Conclusion:In conclusion, a series of 2-(phenyl)-3-(4-(phenyl)thiazol-2-yl)thiazolidin-4-ones have been designed and synthesized. All the titled compounds were evaluated for their in vitro antimicrobial activity against five representative microorganisms. The results of antimicrobial study indicated that the presence of nitro and chloro groups in aromatic ring improved antibacterial activity, whereas the presence of hydroxy group improved antifungal activity of substituted 4-thiazolidinone derivatives.


2021 ◽  
Vol 38 ◽  
pp. 20-24
Author(s):  
S.A. Mohamed ◽  
C. Mathew

Resistance against synthetic antimicrobial agents is one of the major global public health challenges that compel scientists to search for alternatives including those of plants origin. Staphylococcus aureus and Escherichia coli are bacteria responsible for a variety of infections and diseases that causes significant morbidity and mortality in humans and animals. E. coli is widely distributed in nature and commonly found in lower gastro intestinal tracts of most warm-blooded animals associated with urinary tract infections and enterocolitis in humans and colibacillosis in poultry. This study was carried out to investigate antimicrobial activity of methanolic leaf extracts of Bidens pilosa against S. aureus and E. coli. Agar well diffusion method was used to assess antimicrobial activity of the leaf extracts at 20%, 50% and 70% concentrations respectively based on measured zone of inhibition. The leaf extracts of Bidens pilosa produced significant zone of inhibition indicating its antimicrobial activity against E. coli and S. aureus. The antimicrobial activity was demonstrated in all concentrations however, the highest zone of inhibition (18.5mm and 32mm) for E. coli and S. aureus respectively was at 70% concentration. The results shows that Bidens pilosa leaf extracts have antimicrobial activity against the tested bacteria and have the potential for further development including identification of active components that can be tested for treatment of E. coli and S. aureus associated conditions.


Author(s):  
Honeysmita Das ◽  
A.K. Samanta ◽  
Sanjeev Kumar ◽  
P. Roychoudhury ◽  
Kalyan Sarma ◽  
...  

Background: Development and persistence of multidrug resistant (MDR) bacteria is considered to be one of the biggest threats to public health worldwide. Development of new antimicrobial agents and alternatives to the conventional antimicrobial agents to control the menace of AMR is the need of the hour. Plants based products can be effectively explored as potential antimicrobial, antibiofilm and antiquorum sensing agents against major bacterial pathogens of human and animals. This present study was conducted to explore the antimicrobial, antibiofilm and antiquorum sensing activity of aqueous and methanol extracts of leaf, flower, fruit and stem of Melastoma malabathricum against clinical isolates of Staphylococcus aureus and Escherichia coli.Methods: E. coli and S. aureus were isolated and identified from diarrhoeic pigs and poultry and mastitic milk of cattle of Mizoram, respectively. Leaf, flower, fruit and stem of M. malabathricum were collected from Mizoram and extracted by methanol and aqueous solvents. The antimicrobial activity and MIC was determined by using well diffusion method and 96 wells microtiter plate method, respectively. Antibiofilm activity of plant extracts was determined in 96 well tissue culture plate. Antiquorum sensing activity was determined by disc diffusion method.Result: Methanol leaf extract exhibited antimicrobial activity against E. coli but not against S. aureus with 18 mm and 6 mm zone of inhibition at 200 mg/mL and 12.5 mg/mL, respectively. Methanol flower extract showed antimicrobial activity against S. aureus but not against E. coli with 14 mm and 6 mm zone of inhibitions at 200 mg/ml and 12.5 mg/mL, respectively. Similarly, the aqueous leaf extract showed antimicrobial activity against S. aureus but not against E. coli with 12 mm and 6 mm zone of inhibition at 200 mg/mL and 100 mg/mL, respectively. The MIC of M. malabathricum methanol leaf extract against E. coli was 3.125 mg/mL, whereas the MIC value of methanol flower and leaf extracts was 6.25 mg/mL against S. aureus. Antibiofilm activity of M. malabathricum methanol leaf, methanol flower and aqueous leaf extracts was recorded only against S. aureus isolates with maximum inhibition at 0.05 mg/mL concentration. Good antiquorum sensing activities was exhibited by the M. malabathricum methanol leaf, methanol flower and aqueous leaf extracts against S. aureus isolates at 200 mg/mL concentration.


Author(s):  
M. K. Jiyil ◽  
M. I. Shago ◽  
C. E. Mafuyai ◽  
M. Silas ◽  
O. A. Olorunyomi

Background: Antibiotic resistance among pathogenic bacteria is increasing at an alarming rate leading to the need for traditional medicine as an alternative. Aim of the Study: The study aimed to evaluate the antimicrobial activity of methanolic and, aqueous extracts of partial purified protein of young and matured roots of Guiera senegalensis. Methodology: Antimicrobial activity was determined by disc diffusion and broth dilution techniques, Quantitative phytochemical analysis was carried out by standard procedure, the gel chromatography technique was used to fractionate the crude protein. The test isolates were Bacillus subtilis, Staphylococcus aureus, E. coli, Salmonella typhimurium and Candida albicans. Results: The antimicrobial activity showed all the extracts were quite effective against most of the test isolates except Candida albicans (fungus). The crude and partially purified proteins were active against Gram-positive bacteria. The maximum zone of inhibition (37.33±5.03b mm) was observed in methanolic extracts of young root against Staphylococcus aureus at 100 mg/ml. Most extracts of methanolic exhibited minimum inhibitory concentration (MIC) at the range of 6.25 mg/ml and 12.5 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml and 25 mg/ml. The young root was more active than the matured root. Quantitative phytochemicals showed a high amount of saponins (9.98% and 6.42%) in matured and young roots respectively. Conclusion: Guiera senegalensis has broad-spectrum antimicrobial activity and a potential source of new antibiotics that could be useful for the treatment of infectious diseases.


Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Sign in / Sign up

Export Citation Format

Share Document