scholarly journals Effect of Hot Water Exposure Duration, Storage and Hot Water Temperature on Chilling Injury, Incidence and Quality of Keitt Mango (Mangifera indica L.)

Author(s):  
Senewa Bobby Pholoma ◽  
Vallentino Emongor ◽  
Seoleseng Tshwenyane

Low temperature storage is the most effective method of extending postharvest life and maintain fruit quality because it delays physiological processes such as ethylene production and senescence. Unfortunately, fruit such as mangoes are sensitive to low temperature storage and may be detrimental due to chilling injury, which reduces fruit quality. Effects of storage temperature, hot water at various temperatures and durations on alleviation of mango chilling injury and quality were evaluated on Keitt mango for the growing season in Botswana. The treatments were fruits dipped in distilled water at room temperature (25±2ºC- control), dipped in hot water at 50 and 55ºC for duration of 3, 5 and 10 minutes and storage temperatures at 4, 7, 10, 13 and 25±2ºC, plus 95% RH. The results showed that as storage temperature at below 13ºC, chilling injury incidence and severity significantly (P ≤ 0.0001) increased. Atwater temperature from 25ºC to 50 and 55ºC and duration in which mango fruit was held in hot water, increased from 3 to 5 and 10 minutes, chilling injury incidence and severity significantly (P ≤ 0.0001) decreased.

1990 ◽  
Vol 115 (3) ◽  
pp. 430-434 ◽  
Author(s):  
A.P. Medlicott ◽  
J.M.M. Sigrist ◽  
O. Sy

The effects of harvest maturity of mangos (Mangifera indica L.) on storage tinder various low-temperature regimes and the influence of storage on quality development during subsequent ripening at higher temperatures were investigated. The capacity for storage of mango fruit depended on harvest maturity, storage temperature, and the time of harvest within the season. Development of peel and pulp color, soluble solids concentration, pH, and softening in `Amelie', `Tommy Atkins', and `Keitt' mangos occurred progressively during storage for up to 21 days at 12C. Based on the level of ripening change that occurred during 12C storage, immature fruit showed superior storage capacity than fruit harvested at more-advanced stages of physiological maturity. On transfer to ripening temperatures (25C); however, immature fruit failed to develop full ripeness characteristics. Mature and half-mature fruit underwent limited ripening during storage at 12C, the extent of which increased with progressive harvests during the season. Ripening changes during storage for 21 days were less at 8 and 10C than at 12C. Chilling injury, as indicated by inhibition of ripening, was found at all harvest stored at 8C, and in early season harvests stored at 10C. Fruit from mid- and late-season harvests stored better at 10 than at 12C, with no apparent signs of chilling injury. Flavor of mangos ripened after low-temperature storage was less acceptable than of those ripened immediately after harvest. Suggestions are made for maximizing storage potential by controlling harvest maturity and storage temperature for progressive harvests throughout the season.


2017 ◽  
Vol 1 (1) ◽  
pp. 8
Author(s):  
Gysberth Pattiruhu ◽  
Yohannes Aris Purwanto ◽  
Emmy Darmawanty

Mango (Mangifera indica L.) is perishable horticulture product. Commercially, mango fruits are harvested at the mature-green stage of development and are handled at low temperatures to facilitate shipping. However, long term low temperature storage of mature-green mango fruits is currently risky because of chilling injury (CI). The ojective of this study was to examine quality changes of mango during storage at 8 oC after heatshock treatment. Heatshock treatment consist of hot water treatment (HWT) at temperature of 55 oC in 3 and 10 minutes and intermittent warming (IW) at temperature 20 oC for 1 day after 2 and 3 days of low temperature storage. The result showed that HWT of 55 oC in 3 minutes could decrease of weight loss and maintain the quality and chemical content of mango during storage at low temperatures. While IW treatment after 2 and 3 days at low temperature storage in this study was not effective in reducing chilling injury and maintaining quality of mango.Keywords: chilling injury, hetshock treatment,low temperature storage, mango


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1981
Author(s):  
Irfan Ali ◽  
Xiukang Wang ◽  
Mohammad Javed Tareen ◽  
Fahad Masoud Wattoo ◽  
Abdul Qayyum ◽  
...  

Peaches are well-liked amongst the stone fruits in Pakistan. The peach industry faces significant losses, from harvesting to marketing. The objective of this study was to investigate the effectiveness of foliar sprays of salicylic acid (SA) on the fruit quality of peaches (cv. ‘Flordaking’) at the harvest and postharvest life or stages. Different concentrations of SA (control, 1, 2 and 3 mM) were sprayed on the plants at three growth stages of fruit, i.e., the cell division, cell enlargement and pit-hardening stages. In general, all the SA treatments improved the fruit quality at harvest and maintained higher levels of flesh firmness, titratable acidity and ascorbic acid during storage. However, fruit weight loss, soluble solid contents, membrane leakage, chilling injury, color development, disease and decay incidence and the climacteric peak of ethylene were lowered by SA treatment after six weeks of low-temperature storage. SA at a 3-mM concentration was proven to be the most effective in maintaining the quality for a longer period of time during low-temperature storage. Based on the results, it can be concluded that the application of SA at fruit development stages can improve the harvest quality and storability of ‘Flordaking’ peaches.


HortScience ◽  
2012 ◽  
Vol 47 (10) ◽  
pp. 1466-1471 ◽  
Author(s):  
Zhengke Zhang ◽  
Zhaoyin Gao ◽  
Min Li ◽  
Meijiao Hu ◽  
Hui Gao ◽  
...  

‘Tainong 1’ mango fruit were treated with hot water for 10 minutes at 55 °C and then stored at 5 °C for 3 weeks. After removal from low-temperature storage, the effects of hot water treatment (HWT) on chilling injury (CI), ripening and cell wall metabolism during storage (20 °C, 5 days) were investigated. HWT reduced the CI development of the fruit as manifested by firmer texture, external browning, and fungal lesions. A more rapid ripening process, as indicated by changes in firmness, respiration rate, and ethylene production, occurred in heated fruit after exposure to low temperature as compared with non-heated fruit. At the same time, the cell wall components in heated fruit contained more water-soluble pectin and less 1,2-cyclohexylenedinitrilotetraactic acid (CDTA)-soluble pectin than those in non-heated fruit. HWT also maintained higher polygalacturonase [enzyme classification (EC) 3.2.1.15] and β-galactosidase (EC 3.2.1.23) activities as well as lower pectin methylesterase (EC 3.1.1.11) activity. In general, the changes of ripening and cell wall metabolism parameters in the heated fruit after low-temperature storage exhibited a comparable pattern to that of non-cold-stored fruit.


2021 ◽  
pp. 28-44
Author(s):  
Agisanyang Tautsagae ◽  
Vallantino Emongor ◽  
Seoleseng Tshwenyane ◽  
Cornelia Gwatidzo

Low temperature storage is the most effective technology for keeping quality and extending the postharvest life of fresh horticultural produce. However, horticultural produce of tropical and subtropical in origin such as marula fruit are susceptible to chilling injury (CI) when stored at temperatures below their critical minimum temperatures. Therefore, low temperature storage alone is not ideal for produce of tropical and subtropical in origin. The aim of this research was to elucidate the influence of modified atmosphere packaging (MAP) on CI of marula fruits. Storage temperature below 12ºC significantly (P < 0.05) increased CI incidence and severity, and proline content of marula fruit. Marula fruit in MAP had significantly (P < 0.05) lower electrolyte leakage than fruit stored in Air. The results further showed that marula fruit stored at 12?C in MAP had significantly longer shelf-life of 21 days than fruits in Air stored at various temperatures which had a shorter shelf life. It was concluded that marula fruits be stored in MAP at 12°C plus 90-95% RH to alleviate CI incidence and severity and maintain fruit quality and extend shelf-life. Keywords: Marula Fruit; MAP; Chilling Injury; Proline Content; Electrolyte Leakage


2003 ◽  
Vol 83 (14) ◽  
pp. 1451-1454 ◽  
Author(s):  
IGN Hewajulige ◽  
RS Wilson Wijeratnam ◽  
RLC Wijesundera ◽  
M Abeysekere

Sign in / Sign up

Export Citation Format

Share Document