scholarly journals Development and Characterization of Anti-alzheimer Drug-loaded Chitosan Nanoparticles for the Enhanced Penetration of Blood Brain Barrier

Author(s):  
Maria Abdul Ghafoor Raja ◽  
Muhammad Wahab Amjad ◽  
Nawaf Mohamed Alotaibi

Nanotechnology facilitated drug delivery has been used to enhance the drug bioavailability, efficacy, reduce toxicity and improve patient compliance aiming to targetthe cells and tissues to produce anticipated pharmacological action. The aim of the present study was to formulate and evaluate rivastigmine (RT) loaded chitosan (CS) nanoparticles for sustained release. RT is a short actingreversible acetylcholinesterase inhibitor used for the treatment of mild to moderate Alzheimer's and Parkinson's disease. In current research RT loaded CS-tripolyphosphate (TPP) nanoparticles were prepared by usingionic gelation method in fourdifferent polymer concentrations (0.1%,0.2%,0.3%,0.4%). The prepared nanoparticles were evaluated by Zeta sizer in order to determine particle size, PDI and zeta potential. Further, drug entrapment efficiency and in vitro release studies were carried out. The results showed that particle size decreased by loading drug within nanoparticles when compared with unloaded nanoparticles. The particle size of RT loaded CS nanoparticles ranged from 125.9 ± 2.5 to 356.0 ± 7.9 by varying CS concentration from 0.1% to 0.4% w/v. Among different ratios studied, 0.4% ratio showed highest drug entrapment efficiency (80%). In vitro release studies showed that RT loaded CS nanoparticles could sustain release the drug.In conclusion, the current research results showed that the chitosan nanoparticles can be used as a potential carrier for providing sustained delivery of RT.

Author(s):  
JUNMONI NATH

Objectives: To meet the above aim the following objectives are undertaken: (1) Isolation of starch from jackfruit seeds and formulation of curcumin loaded jackfruit seed starch nanoparticles (2) In vitro evaluations of the drug loaded nanoparticles Methods: Jackfruit seed starch nanoparticles were prepared by Nanoprecipitation technique. In this technique, jackfruit seed starch was mixed with curcumin and acetone solution using a magnetic stirrer at 600 rpm. To the above solution, water were added dropwise and stirred at room temperature until acetone was completely vaporized. Nanoparticles were separated by centrifugation at 4000 rpm after 40 min. Results: Particle size of prepared nanoparticle formulations was found to be 371 to 411.72 nm with PDI of 0.148 to 0.356. The maximum % drug entrapment was found to be 57.34 % with formulation F5. In vitro release studies showed sustained release of drug till 12 h. Conclusion: The prepared nanoparticles were evaluated for its particle size, drug entrapment efficiency, in vitro drug release study, and surface morphology studies by scanning electron microscopy. The results of Fourier transform infrared studies of 1:1 physical mixture of drug and excipients confirmed the absence of incompatibility. Thus, the study concludes that curcumin loaded jackfruit seed starch nanoparticles were developed successfully by nanoprecipitation, which is expected to enhance the oral bioavailability of curcumin.


Author(s):  
Tumpa Sarkar ◽  
Abdul Baquee Ahmed

ABSTRACTObjectives: To meet the above aim the following objectives are undertaken: (1) Preparation of paclitaxel (PTX) loaded nanoparticles by differenttechniques, (2) In-vitro evaluations of the drug loaded nanoparticles and selection of optimized batch.Methods: PTX loaded chitosan nanoparticles were prepared by Ionic-crosslinking technique. In this technique, chitosan was dissolved in 0.25%v/vacetic acid solution. To this above solution 0.84%v/v, glutaraldehyde solution was added dropwise under high-speed homogenizer at 17000 rpm for1 hr.Result: Particle size of prepared nanoparticle formulations was found to be 345.175±5.66-815.125±8.355 nm with low PDI between 0.456. Themaximum entrapment of drug was found to be 88.57±2.533% with formulation F5. In-vitro release studies of the F5 formulation showed 57.8±1.735%release of drug after 24 hrs.Conclusion: The prepared nanoparticles were evaluated for its particle size, zeta potential, drug entrapment efficiency, in-vitro drug release study,and surface morphology studies by scanning electron microscopy. The results of Fourier transform infrared studies of 1:1 physical mixture of drug andexcipients confirmed the absence of incompatibility. Thus, the study concludes that PTX loaded nanoparticles were developed successfully by ioniccrosslinking method, which is expected to enhance the oral bioavailability of PTX.Keywords: Paclitaxel, Nanoparticles, Chitosan, Ionic-crosslinking, In-vitro release.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Charu Bharti ◽  
Upendra Nagaich ◽  
Jaya Pandey ◽  
Suman Jain ◽  
Neha Jain

Abstract Background The current investigation is focused on the development and characterization of Eudragit S100 coated nitazoxanide-loaded microbeads as colon-targeted system utilizing central composite design (CCD) and desirability function. The study initiated with the selection of a BCS class II drug nitazoxanide and its preformulation screening with excipients, selection of polymer and identification of concentration for CCD, selection of optimized formulation based on desirability function, and in vitro release studies in simulated gastric and colonic media and stability studies. A two-factor, three-level CCD was employed with two independent variables, i.e. X1 (chitosan % w/v) and X2 (sodium tripolyphosphate % w/v), and three dependent variables, i.e. Y1 (particle size in micrometres), Y2 (percentage yield) and Y3 (percent entrapment efficiency), were chosen. Additionally, surface morphology, mucoadhesion and in vitro drug release studies were also conducted. Result Chitosan concentration showing maximum entrapment and optimum particle size was selected to formulate chitosan beads. The polynomial equation and model graphs obtained from the Design-Expert were utilized to examine the effect of independent variables on responses. The effect of formulation composition was found to be significant (p ˂ 0.05). Based on the desirability function, the optimized formulation was found to have 910.14 μm ± 1.03 particle size, 91.84% ± 0.64 percentage yield and 84.75% ± 0.38 entrapment efficiency with a desirability of 0.961. Furthermore, the formulations were characterized for in vitro drug release in simulated colonic media (2% rat caecal content) and have shown a sustained release of ∼ 92% up to 24 h as compared to in vitro release in simulated gastric fluid. Conclusion The possibility of formulation in enhancing percentage yield and entrapment efficiency of nitazoxanide and the utilization of CCD helps to effectively integrate nitazoxanide microbeads into a potential pharmaceutical dosage form for sustained release.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kumara Swamy ◽  
Ramesh Alli ◽  
Thirupathi Gorre

Purpose: Ropinirole (RP), is a selective dopamine agonist that is used alone or with other medications to treat the symptoms of Parkinson’s disease (PD). RP has low bioavailability of only about 50% due to the first-pass metabolism, and it requires frequent dosing during oral administration. Aim: The objective of the current research was to develop RP loaded solid lipid nanoparticles (RP-SLNs), nanostructured lipid carriers (RP-NLCs), and their corresponding hydrogels (RP-SLN-C and RP-NLC-C) that could enhance RP therapeutic outcomes during PD treatment. Methods: RP nanoparticles were prepared by homogenization followed by probe sonication and optimized based on particle size, polydispersity index (PDI), zeta potential (ZP), % assay, % entrapment efficiency, and in vitro release studies. Optimized formulations were converted to hydrogel formulations using Carbopol 934 as a gelling polymer and optimized based on rheological and release characteristics. Optimized formulations were further evaluated using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), freeze-drying, and stability study at refrigerated and room temperatures. Results: The optimized RP-SLN formulation showed particle size and entrapment efficiency of 213.5±3.8 nm and 77.9±3.1% compared to 190.6±3.7 nm and 85.7±1.7% for optimized RP-NLC formulation. PXRD supplemented and confirmed DSC results, RP was entrapped in a molecularly dispersed state inside the core of the lipid nanocarrier. Furthermore, RP loaded lipid nanocarriers revealed a spherical shape in SEM images. In vitro release studies demonstrated sustained release profiles for RP from SLNs, NLCs, and their hydrogels over 24 h. Optimized SLN, NLC, and nanocarrier loaded hydrogel formulations were stable over three months at 4ºC and 25ºC storage conditions. Conclusion: Overall, the results demonstrated that lipid nanocarriers and their corresponding hydrogel formulations can be considered as a topical drug delivery vehicle for RP during the treatment of PD.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 66-75
Author(s):  
Kumara Swamy Samanthula ◽  
Ramesh Alli ◽  
Thirupathi Gorre

Ropinirole (RP), is a selective dopamine agonist that is used alone or with other medications to treat the symptoms of Parkinson’s disease (PD). RP has low bioavailability of only about 50% due to the first-pass metabolism, and it requires frequent dosing during oral administration. The objective of the current research was to develop RP loaded solid lipid nanoparticles (RP-SLNs), nanostructured lipid carriers (RP-NLCs), and their corresponding hydrogels (RP-SLN-C and RP-NLC-C) that might improve efficacy in PD treatment. RP nanoparticles were prepared by homogenization aided probe sonication method and optimized based on particle size, polydispersity index (PDI), zeta potential (ZP), assay, entrapment efficiency, and in vitro release studies. Optimized formulations were converted to hydrogel formulations using Carbopol 934 as a gelling polymer and optimized based on rheological and release characteristics. Optimized formulations were further evaluated using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), freeze-drying, and stability study at refrigerated and room temperatures. The optimized RP-SLN formulation showed particle size and entrapment efficiency of 213.5±3.8 nm and 77.9±3.1% compared to 190.6±3.7 nm and 85.7±1.7% for optimized RP-NLC formulation. PXRD supplemented and confirmed DSC results, RP was entrapped in a molecularly dispersed state inside the core of the lipid nanocarrier. Furthermore, RP loaded lipid nanocarriers revealed a spherical shape in SEM images. In vitro release studies demonstrated sustained release profiles for RP from SLNs, NLCs, and their hydrogels over 24 h and were stable over three months at 4ºC and 25ºC storage conditions. Keywords: Parkinson’s disease, Ropinirole, Solid lipid nanoparticles, Nanostructured lipid carriers, Hydrogel.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


2021 ◽  
Vol 74 (9) ◽  
pp. 2315-2322
Author(s):  
Firas Aziz Rahi ◽  
Muath Sheet Mohammed Ameen ◽  
Mohammed Shamil Fayyadh

The aim: This work aimed to formulate gliclazide and linagliptin extended-release nanoparticles. Materials and methods: A HPLC method was developed and validated to determine gliclazide and linagliptin at the same time without interference. The nanoparticles were prepared by emulsion solvent evaporation using two polymers, namely hydroxypropyl methylcellulose (HPMC) 4000 cps and xanthan gum. Results: Nanoparticles prepared were characterized for drug contents, production yield and entrapment efficiency, zeta potential, particle size, morphology by transmission electronic microscopy (TEM) and in-vitro release rate. The formulae GLH1, GLX1 and GHX1 showed release of linagliptin more than 75% after 8 hrs. While the only formula among the three (GHX1) showed release of gliclazide more than 80% after 8 h. So, the formula GHX1 showed acceptable release of more than 80% of both gliclazide and linagliptin after 8 h. Conclusions: The formula GHX1 which containing (0.5:1 xanthan gum: drugs) was the best nanoparticles formula which released more than 80% of both drugs after 8 h and could achieve good extended release over 24 h.


Sign in / Sign up

Export Citation Format

Share Document