scholarly journals Development and Validation of New RP-HPLC Method for the Estimation of Antidiabetic Drugs Metformin Hydrochloride and Gemigliptin in Combined Pharmaceutical Dosage Form

Author(s):  
Suleman S. Khoja ◽  
Laxman J. Patel

Metformin Hydrochloride and Gemigliptin is combination of Antidiabetic drug in tablet Zemimet SR ® Tablet (25/500 mg), a member Antidiabetic drug, is a recent drug developed by LG Life sciences for the treatment of Type 2 diabetes. A new sensitive and rapid HPLC method was developed for the determination of Metformin Hydrochloride and Gemigliptin in pharmaceutical dosage forms; it was validated according to International Conference on Harmonization and Food and Drug Administration guidelines. The analysis was performed on the HPLC system equipped with a using Gemni C18, (5 µm) (250 mm x 4.6 mm), with of Buffer (20mM Ammonium Acetate in water, pH 3.5) and Methanol: Acetonitrile 40:10 (%V/V) 60: 40 v/v with at a flow rate of 1.0 mL/min, column temperature 35°C, total run time was 10 min, injection volume 10 μl, and detection was performed at the wavelength (λ) of 265 nm. The calibration plot gave linear relationship over the concentration range of Metformin Hydrochloride 20, 40, 100, 200, 400 and 500 μg/ml, and Gemigliptin 1, 2, 5, 10, 20 and 25 μg/ml, respectively. The accuracy of the proposed method was determined by recovery studies and was found to be Metformin Hydrochloride 99.0 % to 101.0 % and Gemigliptin 98.0 % to 100.0 %.The Limit of Detection were 50.56 and 14.21 μg/ml for Metformin Hydrochloride and Gemigliptin, respectively and the Limit of Quantitation were 166.85 and 43.90 μg/ml for Metformin Hydrochloride and Gemigliptin, respectively% Relative Standard Deviation of the determination of precision was <2%. The results of robustness and solutions stability studies were within the acceptable limits as well the main features of the developed method are low run time and retention time of around 2.9 min for Metformin Hydrochloride (Met) and 7.4 min for Gemigliptin.

Author(s):  
Sirajunisa Talath ◽  
Syeda Humaira

The objective of this work was to develop a simple, sensitive, accurate, precise and reproducible high performance liquid chromatography (HPLC) method for the determination of norfloxacin in pharmaceutical dosage forms. Shimadzo Prominance model L20 AD HPLC system equipped with SPD 20A UV-Vis detector was used for the analysis. The separation was done on RESTEX allure C18 column (3 μm, 15 cm × 4.6 mm), for an isocratic elution a mixture of methanol and water (60:40, v/v) mobile phase at a wavelength of 254 nm. The flow rate was 1.0 mL/min. The RP-HPLC method developed for analysis of norfloxacin was validated with respect to specificity, selectivity, linearity, accuracy, precision and robustness as per the ICH guidelines. The retention time of norfloxacin was 7.5 min. The linearity was established over the concentration ranges of 50-350 μg/mL with correlation coefficients ( r2) 0.999.  The percentage accuracy of norfloxacin ranged from 99.76 -101.66%. The relative standard deviation values for intra-day and inter-day precision was lower than 2.0% and the assay result was found to be 100.65 %. Norfloxacin was subjected to stress conditions such as neutral, acidic, alkaline, oxidation and photolysis degradations as per ICH guidelines. The degradation studies revealed that the drug was found to degrade maximum (1.67%) in alkaline degradation conditions and was highly resistant towards neutral, acidic, oxidative and photolytic degradation conditions. Keywords: Norfloxacin, Validation, Stability-indicating, stress degradation, ICH guidelines.  


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (05) ◽  
pp. 56-64
Author(s):  
Rani A Prameela ◽  
S. Madhavi ◽  
Rao B. Tirumaleswara ◽  
Sudheer Reddy CH.

A novel Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the simultaneous determination of antidiabetic drugs metformin hydrochloride and nateglinide. The method was developed using a Waters ACQUITY UPLC SB C18 (100 × 2.1 mm, 1.8 μm) column. The mobile phase consisting of 0.01 % potassium dihydrogen phosphate buffer (pH 5.8): acetonitrile (50: 50 V/V) was used throughout the analysis. The flow rate was 0.3 mL/min, the injection volume was 1.0 μL, column temperature was 30 0C, run time 3 min and detection was carried at 238 nm using a TUV detector. The retention times of metformin hydrochloride and nateglinide were found to be 1.28 1.71 min, respectively. Metformin hydrochloride and nateglinide were found to be linear over the concentration range of 125-750 and 15-90 μg/mL. The limit of detection and the limit of quantification for metformin hydrochloride were found to be 0.22 and 0.68 μg/mL, respectively, and, for nateglinide, 0.02 and 0.6 μg/mL, respectively. Developed method was validated as per ICH guidelines. The specificity of the method was confirmed by forced degradation study. The suggested method is suitable for determination of metformin hydrochloride and nateglinide in bulk and pharmaceutical dosage forms.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Suresh Babu Bodempudi ◽  
Ravi Chandra Babu Rupakula ◽  
Konda S. Reddy ◽  
Mahesh Reddy Ghanta

Objective: The main objective of present study was to Isolate, characterize and validate a reverse phase high performance liquid chromatographic method was validated for quantification of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance; it decreases the mental disorders in human body. The method is specific, rapid, precise and accurate for the separation and determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance form.Methods: The bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of Olanzapine was resolved on a Zorbax RX-C 8, 250 mm X 4.6 mm, 5 micron column (L-1) using a mobile phase system containing 0.03 M sodium dodecyl sulphate in water pH 2.5 with 1 N sodium hydroxide solution and acetonitrile in the ratio of (Mobile phase A-52:48 v/v) and (Mobile phase B-buffer and Acetonitrile 30:70 v/v) by using the gradient program. The mobile phase was set at a flow rate of 1.5 ml/min and the volume injected was 20μl for every injection. The detection wavelength was set at 220 nm and the column temperature was set at 35 °C.Results: The proposed method was productively applied for the quantitative determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo [f]azulene)]-1,4-piperazine in Olanzapine drug substance form. The linear regression analysis data for calibration plots showed a good linear relationship over a concentration range of 0.025to 0.903 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine, 0.081-0.608 µg/ml for Olanzapine. The mean values of the correlation coefficient were 0.999 and 0.999 for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The method was validated as per the ICH guidelines. The detection limit (LOD) was about 0.007 µg/ml, 0.024 µg/ml and quantitation limit (LOQ) was about 0.024 µg/ml, 0.081 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The relative standard deviation was found to be 1.64 % and 2.18 % for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine.Conclusion: The validated HPLC method and the statistical analysis showed that the method is repeatable and selective for the estimation of the bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of the Olanzapine drug substance.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2018 ◽  
Vol 17 (2) ◽  
pp. 175-182
Author(s):  
Joy Chandra Rajbangshi ◽  
Md Mahbubul Alam ◽  
Md Shahadat Hossain ◽  
Md Samiul Islam ◽  
Abu Shara Shamsur Rouf

This research was aimed to establish a versatile, sensitive, rapid and validated RP-HPLC method to analyze linagliptin in bulk as well as in pharmaceutical dosage forms. Liquid chromatography was performed on HPLC system and 20μl of samples were injected into a C18 column (150 x 4.6 mm i.d., 5μm particle size) and the eluents were monitored through a PDA detector at 239 nm. An isocratic method with a flow rate of 1 ml/min was used to elute the compounds with a mobile phase comprised of 70:30 v/v mixture of phosphate buffer (pH 6.8±0.2) and acetonitrile. The retention time of the compound was found to be 2.8 minutes. According to the ICH Q2(R1) guidelines, the method was validated by establishing several analytical parameters such as system suitability, specificity, linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), ruggedness and robustness to assay linagliptin. The method showed good linearity (R2 = 0.9981) over the concentration ranges of 40 – 60 μg/ml with a recovery between 99.48% ± 0.38% RSD to 100.22% ± 0.011% RSD, whereas the LOD and LOQ values were 0.05 μg/ml and 0.15 μg/ml, respectively. The relative standard deviation (% RSD) for inter-day and intra-day precision was not more than 2.0%. Hence, the proposed method can be applied accurately for research and routine analysis of linagliptin in bulk as well as different pharmaceutical dosage forms. Dhaka Univ. J. Pharm. Sci. 17(2): 175-182, 2018 (December)


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Roghaieh Khoshkam ◽  
Minoo Afshar

A rapid and stability-indicating RP-HPLC method was developed for determination of l-carnitine in tablets. The separation was based on a C18 analytical column using a mobile phase which consisted of 0.05 M phosphate buffer (pH = 3): ethanol (99 : 1), including 0.56 mg/mL of sodium 1-heptanesulfonate. Column temperature was set at 50°C and quantitation was achieved by UV detection at 225 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. Among the different stress conditions, the exposure to acidic and basic conditions was found to be an important adverse stability factor. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in l-carnitine concentration range of 84.74–3389.50 µg/mL (r2=0.9997). Precision was evaluated by replicate analysis in which relative standard deviation (RSD) values for areas were found below 2.0%. The recoveries obtained (100.83%–101.54%) ensured the accuracy of the developed method. The expanded uncertainty (3.14%) of the method was also estimated from method validation data. Accordingly, the proposed validated and rapid procedure was proved to be suitable for routine analyzing and stability studies of l-carnitine in tablets.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fahimeh Sadeghi ◽  
Latifeh Navidpour ◽  
Sima Bayat ◽  
Minoo Afshar

A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r2=0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations.


2011 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Bilal Yilmaz ◽  
Kadem Meral ◽  
Ali Asci ◽  
Yavuz Organer

In this study, a new and rapid spectrofluorometry and high performance liquid chromatography (HPLC) methods were developed for determination of metoprolol in pure and pharmaceutical dosage forms. The solvent system, wavelength of detection and chromatographic conditions were optimized in order to maximize the sensitivity of both the proposed methods. The linearity was established over the concentration range of 50-4000 ng ml-1 for spectrofluorometry and 5.0-300 ng ml-1 for HPLC methods. The intra- and inter-day relative standard deviation (RSD) was less than 4.14 and 3.86% for spectrofluorometry and HPLC, respectively. Limit of quantitation was determined as 30 and 5.0 ng ml-1 for spectrofluorometry and HPLC, respectively. No interference was found from tablet excipients at the selected assay conditions. The methods were applied for the quality control of commercial metoprolol dosage forms to quantify the drug and to check the formulation content uniformity.


Author(s):  
Suleman S. Khoja ◽  
Laxman J. Patel

Ertugliflozin and Sitagliptin is combination of Antidiabetic drug in tablet Steglujan 15 mg/100 mg film-coated tablets®, a member Antidiabetic drug, is a recent drug developed by Merck Sharp and Dohme Company for the treatment of Type 2 diabetes. Ertugliflozin and Sitagliptin can be used alone or in combination therapy. A highly sensitive, precise and accurate Liquid Chromatography with mass spectrometry (LC-MS/MS) method is developed and validated for the determination of Ertugliflozin and Sitagliptin in combined formulation. Chromatographic separation was carried out on Phenomenex Gemini, C18, (150 × 4.6 mm,5 μm) column. Isocratic method was based on 0.1% formic acid: acetonitrile (10:90, v/vas mobile phase, column temperature at 40°C and flow rate at 0.6 mL/minuteswere utilized. The mass spectrometer was operated under multiple reactions monitoring (MRM) mode using electrospray ionization by monitoring the transition pair (precursor to product ion) of m/z 437.10-328.95in the positive mode for Ertugliflozin and transition pair (precursor to product ion) of m/z 408.10-234.95 in the positive mode for Sitagliptin. The method was found linear in the concentration range of 15 to 450 ng/mL and 100–3000 ng/mL for Ertugliflozin and Sitagliptin respectively. The optimized method was validated according to the International Conference on Harmonization (ICH) and FDA guidelines. The developed method was found suitable for the quantitation of Ertugliflozin and Sitagliptin in Pharmaceutical dosage form.


Sign in / Sign up

Export Citation Format

Share Document