scholarly journals A Simple LC-MS/MS Method for Determination of Vemurafenib in Rat Plasma Fed with High Fat Diet

Author(s):  
Ayşe Özdemir ◽  
Senem Şanli ◽  
Erten Akbel

In this study, high fat diet was fed to rats and the amount of vemurafenib in rat plasma was determined by the developed liquid chromatography with tandem mass spectrometry. The calibration curve was linear between 0.01 and 0.8 µg mL−1 vemurafenib with 0.999 regression coefficient.  The limit of detection and quantification of the method are estimated from the signal to noise ratio 3:1 and 10:1, respectively. These are 1.10-4 µg mL−1 for LOD and 4. 10-4  µg mL−1 for LOQ. This method has been found to be reproducible and highly sensitive and  provides a combination of faster analysis time and improved limits of detection.

1989 ◽  
Vol 35 (5) ◽  
pp. 874-878 ◽  
Author(s):  
F Moussa ◽  
L Dufour ◽  
J R Didry ◽  
P Aymard

Abstract By optimizing the conditions for determining trans-phylloquinone and its metabolite, K-2,3-epoxide, in serum through a two-step HPLC process combined with fluorometric detection after coulometric reduction, we have been able to develop a method applicable to small volumes of serum (200 to 500 microL). The limit of detection (signal-to-noise ratio of 3) was 15 ng/L for trans-phylloquinone, 30 ng/L for K-2,3-epoxide. The trans-phylloquinone concentrations measured by this method in serum from 82 children, ages one to six years, whose results were normal for overall coagulation tests, ranged from 40 to 880 ng/L (median 175 ng/L). We discuss these findings and compare them with vitamin K1(20) values reported for adults.


2019 ◽  
Vol 6 (01) ◽  
pp. e28-e35
Author(s):  
Lee-Chuen Cheng ◽  
Vikneswaran Murugaiyah ◽  
Kit-Lam Chan

AbstractAn HPLC method for simultaneous determination of arenarioside (1 ), verbascoside (2), 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5) from Lippia nodiflora in rat plasma was developed and validated. The optimal chromatographic separation was achieved with a gradient mobile phase comprising 0.1% aqueous acetic acid and acetonitrile. The limit of detection was 78.1 ng/mL for 3 and 39.1 ng/mL for the other compounds (signal-to-noise ratio=3), whereas the limit of quantification was 312.5 ng/mL for 3 and 156.3 ng/mL for the other compounds (signal-to-noise ratio=12). The recovery values of compounds 1–5 ranged from 89.37–100.92%. Their accuracy values were between 96.48 and 105.81%, while their corresponding precision values were in the range of 0.75–9.06% for both intraday and inter-day analysis. The method was then applied in the first pharmacokinetic study of 1–5. Following intravenous administration, 1–5 were eliminated slowly from the body with a mean clearance value of 0.11, 0.13, 0.30, 0.09, and 0.23 L/kg h, respectively. Meanwhile, their peak plasma concentration upon oral administration was 8.97, 1.07, 1.06, 0.65, and 0.38 µg/mL, respectively. Compound 3 (5.97%) exhibited the highest absolute oral bioavailability value, followed by 1 (5.22%), 4 (3.13%), 2 (2.10%), and 5 (0.93%).


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Sign in / Sign up

Export Citation Format

Share Document