scholarly journals MOLECULAR ASPECTS OF SCLEROTINIA STEM ROT DISEASE MANAGEMENT IN OILSEED CROPS

2018 ◽  
Vol 10 (4) ◽  
pp. 1166 ◽  
Author(s):  
N. C. GUPTA ◽  
MAHESH RAO ◽  
PANKAJ SHARMA
Author(s):  
Weiguo Dong ◽  
Wenqing Ren ◽  
Xuan Wang ◽  
He Yuke

Abstract MicroRNA319a (miR319a) controls cell division arrest in plant leaves by inhibiting the expression of TCP (TEOSINTE BRANCHED 1/CYCLOIDEA/PCF) family genes. However, it is unclear whether miR319a influences infections by necrotrophic pathogens and host susceptibility. In this study, we revealed that miR319a affected plant resistance to stem rot disease of Sclerotinia sclerotiorum. In the plants of Brassica rapa infected with S. sclerotiorum, miR319a levels increased while expression levels of several BraTCP genes significantly decreased compared with those of the uninfected plants. The overexpression of BraMIR319a in B. rapa increased the susceptibility of the plants to S. sclerotiorum and aggravated stem rot disease, whereas the overexpression of BraTCP4-1 promoted the plant resistance. Our RNA-sequencing data revealed a potential relationship between miR319a and pathogen-related WRKY genes. Chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA) and reporter transaction assay showed that BraTCP4-1 was bound to the promoters of WRKY75, WRKY70, and WRKY33 genes and directly activated these pathogen-related genes. Moreover, the expression levels of WRKY75, WRKY70, and WRKY33 in the plants overexpressing BraMIR319a declined significantly whereas those of the plants overexpressing BraTCP4-1 increased significantly. These results suggest that miR319a and its targeted gene BraTCP4 regulate stem rot resistance through pathways of WRKY genes.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 325-332 ◽  
Author(s):  
L. S. Kull ◽  
W. L. Pedersen ◽  
D. Palmquist ◽  
G. L. Hartman

Population variability of Sclerotinia sclerotiorum, the causal organism of Sclerotinia stem rot of soybean, was determined by mycelial compatibility grouping (MCG) and isolate aggressiveness comparisons. MCG and aggressiveness of S. sclerotiorum isolates from diverse hosts and geographic locations (Diverse Set, 24 isolates), from a soybean field in Argentina (Argentine Set, 21 isolates), and from soybean fields in DeKalb and Watseka, Illinois (DeKalb Set, 124 isolates, and Watseka Set, 130 isolates) were assessed. Among 299 isolates tested, 42 MCGs were identified, and 61% were represented by single isolates observed at single locations. Within the Diverse Set, 17 MCGs were identified; 1 MCG consisted of six isolates, and 16 MCGs consisted of one isolate each. Nine MCGs were identified within the Argentine field with two MCGs composed of either five or six isolates, two MCGs composed of two isolates, and the remaining composed of one isolate each. Each Illinois field was a mosaic of MCGs, but MCG frequencies differed between the two fields. Common MCGs were identified among the Diverse, DeKalb, and Watseka Sets, but no MCGs within the Argentine Set were observed with other sets. MCG 8 was the most frequently sampled and widely dispersed MCG and occurred at a frequency of 29, 36, and 62% in the Diverse, DeKalb, and Watseka Sets, respectively. Variation in isolate aggressiveness was assessed using a limited-term, plug inoculation technique. Isolate aggressiveness varied (P = 0.001) within the Diverse, Argentine, DeKalb, and Watseka Sets. Within widely dispersed MCGs, isolate aggressiveness varied (P ≤ 0.10); however, within locally observed MCGs detected only in single fields, isolate aggressiveness did not vary. Additionally, individual MCGs within the DeKalb and Watseka Sets differed in isolate aggressiveness. Using six soybean cultivars and six S. sclerotiorum isolates, no cultivar-isolate interaction was detected, but resistant and susceptible cultivars performed similarly when inoculated with either less or highly aggressive isolates. Pathogen population structure and variability in isolate aggressiveness may be important considerations in disease management systems.


Author(s):  
R. K. Mishra ◽  
A. K. Parihar ◽  
T. Basvaraj ◽  
Krishna Kumar

Rajmash (Phaseolus vulgaris L.) is one of the important legume crops of North and Central India. This crop is commonly affected by most devastating diseases like powdery mildew and stem rot. Therefore, identification of new resistance source is urgently needed to achieve potential yield. In present investigation fifty-two genotypes of rajmash comprising landraces, cultivars and exotic genotypes were screened against powdery mildew and stem rot diseases under natural field conditions during rabi 2014-15 and 2015-16. The results revealed that, out of 52 genotypes screened against powdery mildew disease, four genotypes/cultivars were free from powdery mildew disease, 16 were found resistant, 12 were moderately resistant, 4 were moderately susceptible, 10 were susceptible and 6 lines were highly susceptible. In case of Sclerotinia stem rot disease, out of 52 genotypes 20 genotypes exhibited resistance, 12 moderately resistance, 7 found susceptible and 5 genotypes were highly susceptible. Furthermore, only four genotypes viz., EC150250, BLF101, EC 565673A and GPR 203 demonstrated resistance reaction against both powdery mildew and stem rot disease. Thus, these genotypes could be used in breeding programme as donor for development of disease resistant varieties against powdery mildew and stem rot disease in future.


2016 ◽  
Vol 44 (1) ◽  
Author(s):  
A. Snehalatharani, N.B.V. Chalapathi ◽  
Rao, G. Ramanandam, H.P. Maheswarappa, C.T. Jose, E. Padma

abstract


2009 ◽  
Vol 157 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Ai-Rong Wang ◽  
Chun-Hua Zhang ◽  
Li-Li Zhang ◽  
Wen-Wei Lin ◽  
De-Shu Lin ◽  
...  

2020 ◽  
Vol 112 (6) ◽  
pp. 5143-5157
Author(s):  
Jianglin Zhang ◽  
Jing Li ◽  
Guotao Geng ◽  
Wenshi Hu ◽  
Tao Ren ◽  
...  

Plant Disease ◽  
1997 ◽  
Vol 81 (3) ◽  
pp. 311-311 ◽  
Author(s):  
K. F. Chang ◽  
R. J. Howard ◽  
R. G. Gaudiel ◽  
S. F. Hwang

Stevia (Stevia rebaudiana Bertoni; Asteraceae), an annual plant originating from Paraguay, contains glucosides of a diterpenoid (2), which is used as a low-caloric sweetener in some South American and southeast Asian countries. The main active ingredient, stevioside, is 100 to 300 times as sweet as sucrose. Stevia has been experimentally grown under field conditions in central and western Canada and has the potential to become a commercially viable alternative crop. In August 1996, a previously undescribed stem rot disease was observed on stevia plants at the Crop Diversification Centre South, Brooks, Alberta. The disease was found in research plots where 4-month-old plants were growing in loam soil. Diseased stems showed dark brown lesions above and at soil level when plant height reached approximately 30 cm. Under dry conditions, mild stem lesions caused plant stunting with lower leaves turning black and curling downward. Wilted leaf symptoms gradually spread upward in affected plants. Partial wilting symptoms appeared when girdling was restricted to branches. The entire plant collapsed when girdling of the crown and roots occurred. Superficial white mycelium developed over the basal part of affected stems under moist conditions, especially after rainy periods. Black, round to oblong sclerotia, 3.5 to 10.1 mm in size, formed externally on the crown areas after plant death. Sclerotinia sclerotiorum (Lib.) de Bary (1) was consistently isolated from the diseased plants. To confirm pathogenicity, 4-week-old stevia seedlings were obtained from shoot cuttings and grown in 12-cm pots of soilless mix. Sclerotia produced on potato dextrose agar were inserted into the mix 0.5 cm deep and 0.5 cm from the stems of test plants. Plants were placed in a growth chamber at 22°C with a 12-h photoperiod and 95% relative humidity. Two weeks after soil infestation, plants wilted and S. sclerotiorum was reisolated from the diseased crown tissues. This is the first report on stevia of sclerotinia stem rot, a disease that could significantly reduce foliar growth and stevioside production in field plantings. References: (1) L. H. Purdy. Phytopathology 69:875, 1979. (2) T. Robinson. 1991. The Organic Constituents of Higher Plants: Their Chemistry and Interrelationships. 6th ed. Cordus Press, North Amherst, MA.


Sign in / Sign up

Export Citation Format

Share Document