scholarly journals Long-term Transition of the Passing Frequency on the North Pacific Route

2004 ◽  
Vol 111 (0) ◽  
pp. 127-134
Author(s):  
Osamu AMAI
Science ◽  
2014 ◽  
Vol 346 (6213) ◽  
pp. 1102-1106 ◽  
Author(s):  
Il-Nam Kim ◽  
Kitack Lee ◽  
Nicolas Gruber ◽  
David M. Karl ◽  
John L. Bullister ◽  
...  

The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1367-1375 ◽  
Author(s):  
T Aramaki ◽  
S Nakaoka ◽  
Y Terao ◽  
S Kushibashi ◽  
T Kobayashi ◽  
...  

ABSTRACTSurface radiocarbon (Δ14C) in the North Pacific has been monitored using a commercial volunteer observation ship since the early 2000s. Here we report the temporal and spatial variations in Δ14C in the summer surface water when the surface ocean is vertically stratified over a 13-yr period, 2004–2016. The long-term Δ14C decreasing trend after the late 1970s in the subtropical region has continued to the present and the rate of decrease of the Kuroshio and Kuroshio Extension, North Pacific and California current areas is calculated to be –3.3, –5.2 and –3.3 ‰/yr, respectively. After 2012 the Δ14C of the Kuroshio and Kuroshio Extension area, however, has remained at an approximately constant value of around 50‰. The result may indicate that subtropical surface Δ14C in the western North Pacific has reached an equilibrium with atmospheric Δ14CO2. The Δ14C in the subarctic region is markedly lower than values in the subtropical region and it seems that the decreasing tendency of surface Δ14C has changed to an increasing tendency after 2010. The results may indicate that bomb-produced 14C, which has accumulated below the mixed layer in the past few decades, has been entrained into the surface layer by deep convection.


2019 ◽  
Vol 199 ◽  
pp. 163-178 ◽  
Author(s):  
G. V. Khen ◽  
E. I. Ustinova ◽  
Yu. D. Sorokin

The study is continuing, which first results were published in 2019 [Khen et al., 2019]. The main patterns of long-term variability are considered for selected climate indices in the North Pacific and links between them are identified on the common methodological basis. The following indices are analyzed: AO (Arctic Oscillation), PDO (Pacific Decadal Oscillation), Nino 3.4 (index of El-Nino — South Oscillation), ALPI (Aleutian Low Pressure index), NPI (North Pacific index), PNA (Pacific/North American index), SHI (Siberian High index), and WP (West Pacific index). Their time-series are provided on websites of the world climate centers, with exception of the Siberian High index that was calculated from the reanalysis data on the sea level pressure provided by the USA National Center for Environmental Prediction (NCEP) — National Center for Atmospheric Research (NCAR) for 1950–2018. Data were analysed using standard statistical methods. Regime shifts are detected using Rodionov’s method of sequential regime shift detection including the regime shift index (RSI) and tools of automatic detection of the regime shifts with improved performance at the ends of time series. Variations of all indices since the middle 20th century correspond to warming that is not monotonous but combines phases of quick transition from one climatic regime to another — climate shifts and periods of relatively stable state between them. The most important climate shifts happened in 1977 and 1989 and they were noted for majority of the considered indices. Values of the indices heightened in the former shift and slightly lowered in the latter one, except of NPI that had opposite changes. PDO, WP and NPI had another positive shift in the recent years (2015–2017) that allows to assume transition to a new climate regime which will be warmer than the previous one in the last two decades. Long-term periodicity coincided with the 19-year cycle of lunar declination is revealed for PDO, ALPI, NPI and PNA; its spectral power amplifies considerably after removing of high-frequency variability by running 5-year averaging of the time series. Nino 3.4 showed a prominent 11-year cycle, possibly associated with the solar activity. SHI, AO and WP changed with periods about two decades: the main frequency is 26 years for SHI, 20 years for AO, and 17 years for WP, but the peaks of spectral power for the two latter indices is low, i.e. non-periodic oscillations dominate for them. Secondary peaks of spectral power are much lower than the main ones, they correspond to cycles of 7–8 years for AO and PDO, 11 years for WP, and 15 years for SHI. The indices of the North Pacific quartette (PDO, ALPI, NPI and PNA) are closely related between each other with high correlation coefficients (0.67–0.96). The Nino 3.4 index is also linked with them, but with lower correlation (0.45–0.56). SHI has statistically significant relationship with AO only, and WP correlates with Nino 3.4. Contribution of the large-scale climate processes to environmental variability in the Far-Eastern Seas of Russia and the Northwestern Pacific will be considered in the next issue.


Sign in / Sign up

Export Citation Format

Share Document