scholarly journals Time Scale for Scour Beneath Pipelines Due to Long-Crested and Short-Crested Nonlinear Random Waves Plus Current

2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Muk Chen Ong ◽  
Dag Myrhaug

This paper provides a practical stochastic method by which the burial and scour depths of short cylinders and truncated cones exposed to long-crested (two-dimensional (2D)) and short-crested (three-dimensional (3D)) nonlinear random waves plus currents can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall second-order wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves plus currents presented by previous published work for short cylinders and truncated cones are used.


Author(s):  
Muk Chen Ong ◽  
Dag Myrhaug

This paper provides a practical stochastic method by which the burial and scour depths of short cylinders and truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves plus currents can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall [1] wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves plus currents presented by Catano-Lopera and Garcia [2, 3] for short cylinders and Catano-Lopera et al. [4] for truncated cones are used.


Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This paper provides a practical stochastic method by which the maximum scour depth around vertical piles exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour depth by Sumer et al. (1992b). An example of calculation is provided. Tentative approaches to related random wave-induced scour cases are also suggested.


Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This paper provides a practical stochastic method by which the maximum equilibrium scour depth around vertical piles exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall wave crest height distribution (Forristall, 2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30, pp. 1931–1943) representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour depth by Sumer et al. (1992, “Scour Around Vertical Pile in Waves,” J. Waterway, Port, Coastal, Ocean Eng., 114(5), pp. 599–641). An example calculation is provided. Tentative approaches to related random wave-induced scour cases are also suggested.


2020 ◽  
Vol 8 (5) ◽  
pp. 338
Author(s):  
Daniele Celli ◽  
Yuzhu Li ◽  
Muk Chen Ong ◽  
Marcello Di Risio

The effects of submerged berms in attenuating the momentary liquefaction beneath rubble mound breakwaters under regular waves were investigated in a recent study. The present work aims to investigate the momentary liquefaction probabilities around and beneath breakwaters with submerged berms under random waves. The interaction between waves and breakwaters with submerged berms has been simulated through a phase-resolving numerical model. The soil response to the seabed pressure induced by random waves has been investigated using a poro-elastic soil solver. For three different breakwater configurations, the liquefaction depths under random wave conditions have been compared with those cases under representative regular waves. In the present study, the offshore spectral wave height ( H m 0 ) and the peak period ( T p ) of irregular waves are used as representative regular wave parameters. Results reveal the importance of considering random waves for a safe estimation of the momentary liquefaction probability. Indication about the minimum number of random waves, which is required to properly catch the liquefaction occurrences, has been also addressed.


2000 ◽  
Vol 27 (12) ◽  
pp. 1391-1405 ◽  
Author(s):  
Jin-Bao Song ◽  
Yong-Hong Wu ◽  
B. Wiwatanapataphee

Author(s):  
Konstantina A. Galani ◽  
Giannis D. Dimou ◽  
Athanassios A. Dimas

The aim of the present work is the experimental study of the turbulent flow induced by waves above a physical model of a rock-armored slope of 1/3. The armor consisted of two layers of rocks with characteristic diameter D50 = 4.4cm. Measurements of the instantaneous velocity fields were conducted using an underwater planar PIV system. Four cases of incoming waves were tested, two cases of regular waves of 1st order Stokes theory with wave period of 1.134s and wave heights of 0.04m and 0.08m, respectively, and two cases of irregular waves, generated from a JONSWAP spectrum, with a peak period of 1.134s and significant wave heights of 0.04m and 0.08m, respectively. For the regular waves, the period-averaged velocity profiles show the existence of a strong undertow current heading towards deep water, while turbulence is not homogeneous with larger horizontal fluctuations. The phase-averaged horizontal velocity profiles present systematically larger values during wave trough passage than during wave crest passage. Furthermore, as the depth becomes smaller, the waveform loses its symmetry, with the wave trough becoming wider and the wave crest steeper. For the irregular waves, the mean velocity profiles show the existence of an undertow current weaker in magnitude than the one in the regular waves, while turbulence is still not homogeneous with larger horizontal fluctuations. For both wave cases, spanwise vorticity, which is generated at the rough surface of the rock-armored slope, is transported landward by the turbulent velocities.


2020 ◽  
Vol 8 (9) ◽  
pp. 654 ◽  
Author(s):  
Yong Jun Cho

The theoretical treatment of statistical properties relevant to nonlinear random waves of finite bandwidth, such as the joint distribution of wave crest and its associated wave period, is an overdue task hampered by the complicated form of the analytical model for sea surface elevation. In this study, we first derive the wave crest distribution based on the simplified version of the Longuet-Higgins’ wave model and proceed to derive the joint distribution of the wave crest and its associated period, and the conditional wave period distribution with a given wave crest, which are of great engineering value. It is shown that the bandwidth of the wave spectrum has a significant influence on the crest distribution, and the significant wave crest is getting larger in an increasing manner as nonlinearity is increased as expected. It also turns out that the positive correlation of wave crest height with its associated period is extended to more massive waves as nonlinearity is enhanced contrary to the general perception in the coastal engineering community that the wave crest is a statistically independent random process with wave period over large waves. The peak period decreases due to the destructive interference of second-order free harmonics.


Author(s):  
Haijiang Liu ◽  
Dong-S. Jeng

The evaluation of the wave-induced soil response is particularly important for many coastal engineering installations such as offshore pipelines, platforms and breakwaters. Most previous investigations have been limited to the linear regular wave loading, even though the real situation is under random waves. In this study, we propose a semi-analytical solution for the random wave-induced pore pressure and effective stresses in marine sediments. Based on the new analytical solutions, different soil responses under the random wave loading are investigated and compared with the corresponding results under the linear regular waves. Numerical examples demonstrate the significant difference on wave-induced seabed response between these two wave loadings due to the irregularity introduced by the random waves. Finally, the influence of several soil parameters on the soil response under random wave loading is also examined.


Author(s):  
Sing-Kwan Lee ◽  
Kai Yu ◽  
Stanley Chenpey Huang

CFD (Computational Fluid Dynamics) simulations of airgap and wave impact load on a semisubmersible under extreme wave conditions are performed in this study. Unlike the common practice, in which environmental waves are modeled as regular waves, a random wave series based on a JONSWAP spectrum for a 100-year return wave in the Gulf of Mexico is used to interact with a moored semisubmersible to simulate a more realistic environment condition. Wave run-up and impact loads on a moored semisubmersible due to both regular and random waves are computed and compared to investigate the influence of these different extreme waves on motion and impact load.


Sign in / Sign up

Export Citation Format

Share Document