scholarly journals NEW FRAMEWORK FOR PREDICTION OF LONGSHORE CURRENTS

1982 ◽  
Vol 1 (18) ◽  
pp. 99 ◽  
Author(s):  
C.A. Fleming ◽  
D.H. Swart

The accuracy of prediction of longshore sediment transport depends largely on the accuracy with which the wave-driven longshore currents within the breaker zone can be predicted. Longuet-Higgins (1970) developed a formulation for longshore transport which is widely used today. In the present paper the basic theory of Longuet-Higgins is reexamined. The effect of bed roughness on the magnitude of the longshore current is quantified with the aid of over 350 individual data sets and the theory is theoretically extended to include the effect of random waves, in a similar way to Battjes (1974), and higher-order waves. For this latter purpose the Vocoidal water wave theory of Swart (1978) is used. It is shown that the use of Vocoidal theory leads to a velocity distribution which is in closer correspondence to measured data than that predicted by using linear wave theory.

2018 ◽  
Vol 203 ◽  
pp. 01021
Author(s):  
Nurul 'Azizah Mukhlas ◽  
Noor Irza Mohd Zaki ◽  
Mohd Khairi Abu Husain ◽  
Gholamhossein Najafian

For offshore structural design, the load due to wind-generated random waves is usually the most important source of loading. While these structures can be designed by exposing them to extreme regular waves (100-year design wave), it is much more satisfactory to use a probabilistic approach to account for the inherent randomness of the wave loading. This method allows the statistical properties of the loads and structural responses to be determined, which is essential for the risk-based assessment of these structures. It has been recognized that the simplest wave generation is by using linear random wave theory. However, there is some limitation on its application as some of the nonlinearities cannot be explained when higher order terms are excluded and lead to underestimating of 100-year wave height. In this paper, the contribution of nonlinearities based on the second order wave theory was considered and being tested at a variety of sea state condition from low, moderate to high. Hence, it was proven that the contribution of nonlinearities gives significant impact the prediction of 100-year wave's design as it provides a higher prediction compared to linear wave theory.


Author(s):  
J. Michael R. Graham ◽  
Martin J. Downie

A numerical method developed from earlier work [1, 2] of predicting damping due to eddy shedding from sharp or rounded bilges of a hull of arbitrary cross-section in beam waves is presented. The method matches an inner solution which simulates the local bilge section separated flow numerically to an outer wave potential flow solution. The latter can be any standard 3-dimensional panel or other method for the whole body which provides the local values of the matching velocity parameter at all bilge sections which shed eddies. Scaling by the matching parameter provides a physically based sectional damping coefficient for a response computation. In the case of free response of a floating body feed-back from the viscous damping to the bilge velocity parameter through the response mode amplitudes necessitates iteration which generally converges very quickly. Computational predictions carried out in the frequency domain using this prediction method assuming linear wave theory for the outer flow are presented and compared with laboratory wave tank measurements for roll response of two floating hulls in regular and random waves. Application of the method to viscous damping of more complex geometries is also possible.


Author(s):  
R. Jayalekshmi ◽  
R. Sundaravadivelu ◽  
V. G. Idichandy

The effect of tether-riser dynamics on the response characteristics of deep water tension leg platforms in water depths 900 m and 1800 m under random waves is investigated using a developed nonlinear finite element analysis program in the time-domain. Updated Lagrangian coordinates and incremental iterative solution based on Newmark’s integration scheme are adopted. Linear wave theory is used. Relative velocity form of Morison’s equation is used for estimating the wave forces. Current forces are also included in the analysis. Results are reported in the form of statistical values of responses. The statistical values of responses are found to increase with water depth and significant increase is observed when risers are included.


1985 ◽  
Vol 107 (1) ◽  
pp. 18-23
Author(s):  
T. H. Dawson

Laboratory measurements of the total in-line forces on a fixed vertical 2-in-dia cylinder in deep-water regular and random waves are given and compared with predictions from the Morison equation. Results show, for regular waves with heights ranging from 2 to 22 in. and frequencies ranging from 0.4 to 0.9 Hz that the Morison equation, with Stokes wave theory and constant drag and inertia coefficients of 1.2 and 1.8, respectively, provides good agreement with the measured maximum wave forces. The force variation over the entire wave cycle is also well represented. The linearized Morison equation, with linear wave theory and the same coefficients likewise provides close agreement with the measured rms wave forces for irregular random waves having approximate Bretschneider spectra and significant wave heights from 5 to 14 in. The success of the constant-coefficient approximation is attributed to a decreased dependence of the coefficients on dimensionless flow parameters as a result of the circular particle motions and large kinematic gradients of the deep-water waves.


1976 ◽  
Vol 1 (15) ◽  
pp. 28 ◽  
Author(s):  
James R. Walker

The primary objective of this study was to ascertain the influence of wave height and breaking on wave refraction over a three-dimensional shoal. The subject wave transformations were studied in an hydraulic model. Wave shoaling, decay in the breaker zone, and phase velocities were analyzed in a base test series over a bottom slope of 1:30. A second test series was conducted over a three-dimensional shoal. Wave patterns were photographed and wave heights and celerities were measured. The measurements were compared with wave refraction patterns and coefficients computed by analytical methods. Wave shoaling observed over the constant 1:30 slope was 25 percent greater than predicted by Airy theory at the breaking point for wave steepness H0/L0=.030 and 50 percent greater than predicted for H0/Lo = •002. Shoaling measurements were compared with other empirical data sets, confirming the inadequacy of commonly used practice using linear wave theory near the breaker zone. The celerity measurements indicated that the non-breaking celerity was given by C = (1+.25 H/d)Ca, where Ca is the Airy celerity. The discussion and results give a basic understanding of wave refraction near the breaker zone, supplementing analytical papers on refraction procedures using finite amplitude wave theories.


2014 ◽  
Vol 69 (12) ◽  
pp. 2438-2445
Author(s):  
Cristina N. A. Viola ◽  
Manel Grifoll ◽  
Jaime Palalane ◽  
Tiago C. A. Oliveira

This study aims to characterize the wave climate near the coastal region of Maputo (Mozambique), and to provide a first assessment of the sediment transport load in this area. A time-series of 13 years' worth of offshore wave data, obtained from reanalysis products, was propagated to the coast. Wave propagation was performed using Linear Wave theory and the numerical model, Simulating WAves Nearshore (SWAN). Propagations with SWAN were carried out considering different scenarios in order to evaluate the influence of parameters such as wind, tidal level, frequency spectrum and numerical mesh resolution on wave characteristics along the coast. The prevalent waves propagated came from between east and southwest directions. Results from linear propagation were used to estimate the potential longshore sediment transport. The Coastal Engineering Research Center formula was applied for a stretch of beach in the Machangulo Peninsula. A net potential rate of longitudinal sediment transport (of the order of 105 m3/year, along an extension of the coast of 21 km) was directed northwards, and was consistent with the frequent wave directions.


2021 ◽  
Vol 33 (6) ◽  
pp. 275-286
Author(s):  
Jae-Sang Jung ◽  
Changhoon Lee

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn’t consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.


2005 ◽  
Vol 128 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Sébastien Fouques ◽  
Harald E. Krogstad ◽  
Dag Myrhaug

Synthetic aperture radar (SAR) imaging of ocean waves involves both the geometry and the kinematics of the sea surface. However, the traditional linear wave theory fails to describe steep waves, which are likely to bring about specular reflection of the radar beam, and it may overestimate the surface fluid velocity that causes the so-called velocity bunching effect. Recently, the interest for a Lagrangian description of ocean gravity waves has increased. Such an approach considers the motion of individual labeled fluid particles and the free surface elevation is derived from the surface particles positions. The first order regular solution to the Lagrangian equations of motion for an inviscid and incompressible fluid is the so-called Gerstner wave. It shows realistic features such as sharper crests and broader troughs as the wave steepness increases. This paper proposes a second order irregular solution to these equations. The general features of the first and second order waves are described, and some statistical properties of various surface parameters such as the orbital velocity, slope, and mean curvature are studied.


Sign in / Sign up

Export Citation Format

Share Document