scholarly journals IH-3VOF: A THREE-DIMENSIONAL NAVIER-STOKES MODEL FOR WAVE AND STRUCTURE INTERACTION

2011 ◽  
Vol 1 (32) ◽  
pp. 55 ◽  
Author(s):  
Javier Lara ◽  
Inigo Javier Losada ◽  
Manuel Del Jesus ◽  
Gabriel Barajas ◽  
Raul Guanche

This paper describes the capability of a new model, called IH-3VOF to simulate wave-structure interaction problems using a three-dimensional approach. The model is able to deal with physical processes associated with wave interaction with porous structures. The model considers the VARANS equations, a volume-averaged version of the traditional RANS (Reynolds Averaged Navier-Stokes) equations. Turbulence is modeled using a k- approach, not only at the clear fluid region (outside the porous media) but also inside the porous media. The model has been validated using laboratory data of free surface time evolution in a fish tank containing a porous dam. Numerical simulations were calibrated by adjusting the porous flow empirical coefficients for two granular material characteristics. Sensitivity analysis of porous parameters has also been performed. The model is proven to reproduce with a high degree of agreement the free surface evolution during the seeping process. Simulations of a three- dimensional porous dam breaking problem has been studied, showing the excellent performance of the model in reproducing fluid patterns around a porous structure. The model is powerful tool to examine the near-field flow characteristics around porous structures in three dimensional flow conditions.

2020 ◽  
Vol 10 (18) ◽  
pp. 6501 ◽  
Author(s):  
Tso-Ren Wu ◽  
Thi-Hong-Nhi Vuong ◽  
Chun-Wei Lin ◽  
Chun-Yu Wang ◽  
Chia-Ren Chu

This paper incorperates Bingham and bi-viscosity rheology models with the Navier–Stokes solver to simulate the dynamics and kinematics processes of slumps for tsunami generation. The rheology models are integrated into a computational fluid dynamics code, Splash3D, to solve the incompressible Navier–Stokes equations with volume of fluid surface tracking algorithm. The change between un-yield and yield phases of the slide material is controlled by the yield stress and yield strain rate in Bingham and bi-viscosity models, respectively. The integrated model is carefully validated by the theoretical results and laboratory data with good agreements. This validated model is then used to simulate the benchmark problem of the failure of the gypsum tailings dam in East Texas in 1966. The accuracy of predicted flood distances simulated by both models is about 73% of the observation data. To improve the prediction, a fixed large viscosity is introduced to describe the un-yield behavior of tailings material. The yield strain rate is obtained by comparing the simulated inundation boundary to the field data. This modified bi-viscosity model improves not only the accuracy of the spreading distance to about 97% but also the accuracy of the spreading width. The un-yield region in the modified bi-viscosity model is sturdier than that described in the Bingham model. However, once the tailing material yields, the material returns to the Bingham property. This model can be used to simulate landslide tsunamis.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


1989 ◽  
Vol 16 (6) ◽  
pp. 829-844
Author(s):  
A. Soulaïmani ◽  
Y. Ouellet ◽  
G. Dhatt ◽  
R. Blanchet

This paper is devoted to the computational analysis of three-dimensional free surface flows. The model solves the Navier-Stokes equations without any a priori restriction on the pressure distribution. The variational formulation along with the solution algorithm are presented. Finally, the model is used to study the hydrodynamic regime in the vicinity of a projected harbor installation. Key words: free surface flows, three-dimensional flows, finite element method.


2019 ◽  
Vol 24 ◽  
pp. 02011
Author(s):  
Giovanni Cannata ◽  
Francesco Gallerano ◽  
Federica Palleschi ◽  
Chiara Petrelli ◽  
Luca Barsi

Submerged shore-parallel breakwaters for coastal defence are a good compromise between the need to mitigate the effects of waves on the coast and the ambition to ensure the preservation of the landscape and water quality. In this work we simulate, in a fully three-dimensional form, the hydrodynamic effects induced by submerged breakwaters on incident wave trains with different wave height. The proposed three-dimensional non-hydrostatic finite-volume model is based on an integral form of the Navier-Stokes equations in σ-coordinates and is able to simulate the shocks in the numerical solution related to the wave breaking. The obtained numerical results show that the hydrodynamic phenomena produced by wave-structure interaction have features of three-dimensionality (undertow), that are locally important, and emphasize the need to use a non-hydrostatic fully-three-dimensional approach.


2012 ◽  
Vol 256-259 ◽  
pp. 1990-1993
Author(s):  
Zhi Gang Bai ◽  
Jun Zhao

The Smoothed Particle Hydrodynamics (SPH) method is a mesh-free Lagrangian approach which is capable of tracking the large deformations of the free surface with good accuracy. A three-dimensional SPH model was proposed to simulate the wave–structure interaction (WSI), in which a weakly compressible SPH model was introduced to investigate the wave breaking and coastal structure. To validate the SPH numerical model, three different types of wave breaking, namely, spilling, plunging and surging breaking were successfully simulated. The computations were compared with the experimental data and a good agreement was observed. The hydrodynamics model of interaction between wave and structure was established according to Navier-Stokes equations in SPH style. And the model was used in simulating the interaction between wave and a series of new type breakwaters. It is proven to be a promising tool and able to provide reliable prediction on the wave-structure interaction in coastal engineering.


2017 ◽  
Vol 11 (01) ◽  
pp. 1740006 ◽  
Author(s):  
Changbo Jiang ◽  
Xiaojian Liu ◽  
Yu Yao ◽  
Bin Deng ◽  
Jie Chen

Seawall is a most commonly used structure in coastal areas to protect the landscape and coastal facilities. The studies of interactions between the tsunami-like solitary waves and the seawalls are relatively rare in the literature. In this study, a three-dimensional numerical model based on OpenFOAM® was developed to investigate the tsunami-like solitary waves propagating over a rectangular seawall. The Navier–Stokes equations for two-phase incompressible flow, combining with methods of [Formula: see text] for turbulence closure and Volume of Fluid (VOF) for tracking the free surface, were solved. Laboratory experiments were performed to measure some of the hydrodynamic feature associated with solitary waves. The model was then validated by the laboratory data, and good agreements were found for free surface, velocity and dynamic pressure around the seawall. Finally, a series of numerical experiments were conducted to analyze the evolution of both wave and flow fields, the overtopping discharge as well as wave pressure (force) around the seawall, special attention is given to the effects of seawall crest width. Our findings will help to improve the understanding in the occurrences of tsunami-induced damages in the vicinity of seawall such as wave impact and local scouring.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 451 ◽  
Author(s):  
Cannata ◽  
Tamburrino ◽  
Ferrari ◽  
Badas ◽  
Querzoli

We present a study of wave overtopping of barriers. The phenomenon of the wave overtopping over emerged structures is reproduced both numerically and experimentally. The numerical simulations are carried out by a numerical scheme for three-dimensional free-surface flows, which is based on the solution of the Navier–Stokes equations in a novel integral form on a time-dependent coordinate system. In the adopted numerical scheme, a novel wet–dry technique, based on the exact solution of the Riemann problem over the dry bed, is proposed. The experimental tests are carried out by adopting a nonintrusive and continuous-in-space image-analysis technique, which is able to properly identify the free surface even in very shallow waters or breaking waves. A comparison between numerical and experimental results, for several wave and water-depth conditions, is shown.


Sign in / Sign up

Export Citation Format

Share Document