scholarly journals A STUDY ON OPTIMAL DEPLOYMENT OF TSUNAMI OBSERVATION INSTRUMENTS IN KOREA

Author(s):  
Eunju Lee ◽  
Tae-Hwa Jung ◽  
Sungwon Shin

Tsunamis are one of the most destructive natural phenomena (Pugh and Woodworth, 2014). For past decades, the risk of potential earthquake zones has been issued by Japanese researchers, which could occur tsunami, in Niigata and Tottori area located in the west coast of Japan and the Ryukyu trench located in Okinawa as well (Disaster Prevention Research Institute, Japan). Also, there is a Yamamoto Rise on the East Sea, where it strongly affects tsunami propagation. This topography causes high tsunami energy to concentrate on the east coast of Korea (Cho and Lee, 2013). For example, the 1983 Akita and 1993 Hokkaido earthquake induced tsunamis, Japan, respectively cause the property and life damages to the certain cities on the east coast of Korea. Therefore, it is important to propose the optimal deployment location of offshore tsunami observation instruments to contribute to the tsunami early warning system by increasing probability of tsunami detection with the minimal number of instruments considering a large number of potential tsunami scenarios. In this study, by considering various factors, the optimal location of instruments is suggested based on the numerical model results of possible tsunami scenarios.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/q3PLE6EgtrY

2010 ◽  
Vol 10 (8) ◽  
pp. 1759-1780
Author(s):  
O. Boebel ◽  
M. Busack ◽  
E. R. Flueh ◽  
V. Gouretski ◽  
H. Rohr ◽  
...  

Abstract. The German-Indonesian Tsunami Early Warning System (GITEWS) aims at reducing the risks posed by events such as the 26 December 2004 Indian Ocean tsunami. To minimize the lead time for tsunami alerts, to avoid false alarms, and to accurately predict tsunami wave heights, real-time observations of ocean bottom pressure from the deep ocean are required. As part of the GITEWS infrastructure, the parallel development of two ocean bottom sensor packages, PACT (Pressure based Acoustically Coupled Tsunameter) and OBU (Ocean Bottom Unit), was initiated. The sensor package requirements included bidirectional acoustic links between the bottom sensor packages and the hosting surface buoys, which are moored nearby. Furthermore, compatibility between these sensor systems and the overall GITEWS data-flow structure and command hierarchy was mandatory. While PACT aims at providing highly reliable, long term bottom pressure data only, OBU is based on ocean bottom seismometers to concurrently record sea-floor motion, necessitating highest data rates. This paper presents the technical design of PACT, OBU and the HydroAcoustic Modem (HAM.node) which is used by both systems, along with first results from instrument deployments off Indonesia.


2010 ◽  
Vol 10 (7) ◽  
pp. 1617-1627 ◽  
Author(s):  
A. Y. Babeyko ◽  
A. Hoechner ◽  
S. V. Sobolev

Abstract. We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.


2021 ◽  
Vol 331 ◽  
pp. 07006
Author(s):  
Wahyu Kurniawan ◽  
Daryono ◽  
IDK Kerta ◽  
Bayu Pranata ◽  
Tri Winugroho

The tsunami of Sunda Strait occurred on December 22, 2018, at 21:03 West Indonesia Time (zone). An eruption of Mount Anak Krakatau caused an eruption that triggered a landslide on the slopes of Mount Anak Krakatau covering an area of 64 hectares that hit the coastal area of western Banten and southern Lampung and resulted in 437 deaths, 14.059 people were injured, and 33.721 people were displaced. Before the tsunami, signal transmissions (gaps) at the Lava seismograph station installed on the body of Mount Anak Krakatau experienced broken so that Mount Anak Krakatau Observation Post could not record volcanic earthquake signals since December 22, 2018, at 21.03 West Indonesia Time (zone). Given these facts, proper monitoring and analysis were required to monitor and analyze the source of ground vibrations originating from the eruption of Mount Anak Krakatau. Therefore, this study aims to confirm the eruptive activity of Mount Anak Krakatau based on seismic monitoring and analysis sourced from the BMKG's seismic sensor network. The method the author uses is by monitoring the seismic signal recorded by the seismometer and analyzing the seismic signal using the Seiscomp3 software. By the results of monitoring and analysis of seismic data, it was found that the location of the center of the ground shaking was on Mount Anak Krakatau with a magnitude of 3.4, and a depth of 1 km. To anticipate similar tsunami events in the future, it is very necessary to have a tsunami early warning system originating from volcanic activity and volcanic body avalanches.


2010 ◽  
Vol 10 (2) ◽  
pp. 181-189 ◽  
Author(s):  
C. Falck ◽  
M. Ramatschi ◽  
C. Subarya ◽  
M. Bartsch ◽  
A. Merx ◽  
...  

Abstract. GPS (Global Positioning System) technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009) are to support the determination of sea levels (measured onshore and offshore) and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min). The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas) are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006). This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement) and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007). This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore) to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication system layout with real-time data streaming, the data processing strategy and the final products of the GPS-based early warning system components.


2010 ◽  
Vol 10 (12) ◽  
pp. 2659-2675 ◽  
Author(s):  
J. Birkmann ◽  
K. v. Teichman ◽  
T. Welle ◽  
M. González ◽  
M. Olabarrieta

Abstract. The development of appropriate risk and vulnerability reduction strategies to cope with tsunami risks is a major challenge for countries, regions, and cities exposed to potential tsunamis. European coastal cities such as Cadiz are exposed to tsunami risks. However, most official risk reduction strategies as well as the local population are not aware of the probability of such a phenomenon and the potential threat that tsunami waves could pose to their littoral. This paper outlines how tsunami risks, and particularly tsunami vulnerability, could be assessed and measured. To achieve this, a vulnerability assessment framework was applied focusing on the city of Cadiz as a case study in order to highlight the practical use and the challenges and gaps such an assessment has to deal with. The findings yield important information that could assist with the systematic improvement of societal response capacities of cities and their inhabitants to potential tsunami risks. Hazard and vulnerability maps were developed, and qualitative data was obtained through, for example, focused group discussions. These maps and surveys are essential for the development of a people-centred early warning and response system. Therefore, in this regard, the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean, and connected seas promoted by the UNESCO-Intergovernmental Oceanographic Commission (IOC) should encompass these assessments to ensure that action is particularly intensified and fostered by those potentially exposed. That means that besides the necessary technical infrastructure for tsunami detection, additional response and adaptation measures need to be promoted – particularly those that reduce the vulnerability of people and regions exposed – in terms of national systems. In addition, it is important to develop emergency preparedness and awareness plans in order to create an integrated regional Tsunami Early Warning System (TEWS) by 2011. The findings of the paper are based on research conducted within the framework of the EC funded project TRANSFER: "Tsunami Risk ANd Strategies For the European Region", a project that aims to improve the understanding of tsunami processes in the Euro-Mediterranean region, to develop methods and tools to assess vulnerability and risk, and to identify strategies for the reduction of tsunami risks.


Disastrous tidal flooding on the East Coast of England in 1953 was followed by the setting up of a flood warning system for the East Coast, and led to consideration being given to the feasibility of excluding dangerous surges from London by the construction of a tidal barrier across the Thames. Frequency estimates in connexion with the latter led in turn to the introduction of an improved warning system for London in 1968. This paper describes the physical setting and the nature of surges on the East Coast and in the Thames estuary, and the means used to forecast them; and refers to supporting investigational work. It discusses the means of disseminating warnings to those at risk and concludes by attempting to foresee how the system might develop.


Sign in / Sign up

Export Citation Format

Share Document