scholarly journals Production of tortillas from nixtamalized corn flour enriched with Andean crops flours: Faba-bean (Vicia faba) and white-bean (Phaseolus vulgaris)

Author(s):  
Diego Salazar ◽  
Mayra Rodas ◽  
Mirari Arancibia

This study aims to produce corn nixtamalized tortillas enriched with faba-bean (25%, 50%, 75% w/w) and white-bean (25%, 50%, 75% w/w) flours. Faba-bean and white-bean are Andean crops (AC) rich in protein, carbohydrates, fiber, minerals, vitamins, and gluten-free. Tortillas were characterized in terms of proximal, physicochemical, sensorial, microbiological, and texture properties. Proximal composition shows that corn flour has 14.5 % less protein, 0.83 % less ash, and 1.39 % fatter than faba-bean flour, while in white-bean flour, the fiber content is three times higher. Moisture content was less than 14 %, which guarantees the control shelf-life; gluten content was approximately 5 ppm. Granulometry properties showed that flours have coarser than finesse particles, water absorption capacity showed a range of 60 to 80 g of water for 100 g of flour. In nixtamalized tortillas, high protein content was observed in samples with 25 % of corn and 75 % of two different Andean crops. Enriched tortillas showed lower lipid content, higher dietary fiber, and higher ash content than the control sample. The sensorial analysis showed that the best formulation based on overall acceptability was 25% (w/w) of corn flour and 75% of white-bean flour. The oil content showed that the samples absorbed about 8% of oil during the toasted. The hardness parameter showed that the sample CPB2575: Corn flour (25%) + White-bean flour (75%); was harder than the control. The microbiological evaluation established that the tortillas comply with the normative what indicates the absence of harmful microorganisms to public health. Color parameters showed that samples tend to lightness with a tendency to reddish color in enriched tortillas while in control are greenish. Andean crop flours are one alternative to increase the nutritional value of corn tortillas with acceptable sensorial characteristics.

2019 ◽  
pp. 1-9
Author(s):  
D. B. Kiin-Kabari ◽  
O. M. Akusu ◽  
U. A. Udoh

Breakfast strips were produced from different blends of orange-fleshed sweet potato (Ipomea batatas), plantain (Musa paradisiaca) and soybean (Glycine max) flours with substitution ratios of 100:0:0, 90:10:0, 90:0:10, 80:10:10, 70:15:15, 60:20:20 and 50:25:25 and labelled as samples A, B, C, D, E, F and G, respectively. The blends were evaluated for functional properties, total carotene, vitamins (B2 and B6) and sensory properties of the breakfast strips with a commercial breakfast food (Flakes) as control (sample H) . For the functional properties, the water absorption capacity decreased while the oil absorption increased with an increase in substitution levels of the soybean flour. The bulk density, solubility, swelling power and swelling volume were higher in sample A. The least gelation capacity maintained a constant rate of 4% across the blends. The moisture content of the strips ranged from 7.25-9.40%. The Ash contents were below 3% for all the blends. The protein contents increased with an increase in substitution with soybean flour while sample A - breakfast strips from 100% orange-fleshed sweet potato flour showed the highest value for fats (5.62%). The fibre content ranged from 0.69 to 5.14% and carbohydrate content reduced with an increased substitution with soybean flour (72.25-78.70%). The energy value ranged from 351.90-384.80 Kcal/100 g which was within the limit recommended for breakfast foods. Total carotene content increased with increased substitution with orange-fleshed sweet potato (15.18-33.56 mg/kg) which is significantly higher than the control at 0.75 mg/kg. The result of the sensory evaluation showed that the overall acceptability of the samples produced compared favourably with the control. Sample A and B showed a vitamin B2 of 4.70 and 4.00 mg/kg, respectively. However, the values decreased with increase in the addition of soybean while vitamin B6 increased with increase in soybean.


2019 ◽  
pp. 1-12
Author(s):  
M. O. Eke ◽  
D. Ahure ◽  
N. S. Donaldben

Cookies was produced from wheat (Triticum, spp), acha (Digitaria exilis), and sprouted soybeans (Glycine max) flour blends. The acha and soybeans were processed into flour and used to substitute wheat flour at different proportions with 100:0:0 wheat, acha and sprouted soybeans flour (WAS) as the control, 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS). The functional properties of the wheat, acha and sprouted soybeans flour blends, physical properties and proximate compositions of the cookies were determined. The functional properties of the flour samples shows that the bulk density, wettability, water absorption capacity, oil absorption capacity and gelatinization temperature ranged from 0.63 g/ml-0.99 g/ml, 10.21-12.98 g/sec, 6.53-12.52 g/g, 0.52-0.66 g/g and 63.7-65.1ºC respectively. There were significant differences (p<0.05) in all the values. The proximate composition of cookies sample showed that crude protein, crude fat, crude fibre, ash, moisture and carbohydrate content ranged from 12.14-16.48 %, 2.10-3.74 %, 1.76-2.55 %, 2.75-8.55 %, 9.18-9.50 % and 59.37-72.06 % respectively. The physical properties of cookies showed that the weight, diameter, thickness and spread ratio ranged from 15.61-17.11g; 61.59-63.20mm; 9.88-11.99mm and 5.28-6.24 respectively. The control sample cookies from 100:0:0 (WAS), wheat, acha and sprouted soybeans flour blends sample had the highest sensory scores in terms of the taste, appearance, texture, aroma and overall acceptability. There was significant difference (p<0.05) in the colour, texture and aroma but there was no significant difference (p>0.05) in the taste and overall acceptability in 60:30:10, 50:40:10, 45:45:10, 40:50:10 and 35:55:10 (WAS) samples.


Author(s):  
Ufot E. Inyang ◽  
Etini A. Daniel ◽  
Florence A. Bello

Composite flours are used for bakery products to improve the nutritional value and reduce the reliance on wheat importation. The present study was aimed at assessing the effect of supplementing whole wheat flour with acha and red kidney bean flours on the physical properties, proximate composition, mineral and sensory characteristics of biscuits made from the blends. Blend ratios used were 100:00:00 (T1, control sample), 75:25:00 (T2), 75:00:25 (T3) and 50:25:25 (T4) (whole wheat: acha: kidney bean flour). The result showed that all the parameters varied with the composition of flours in the blends. The biscuit weight, diameter, thickness and spread ratio ranged from 16.32 to 19.08g, 4.02 to 4.40cm, 0.69 to 0.78cm and 5.33 to 6.38 respectively. Incorporation of kidney bean flour in the blends led to the reduction in spread ratio of the biscuit. The protein, fat, ash, crude fibre and carbohydrate contents in the biscuits ranged from 11.73 to 15.20%, 16.34 to 17.95%, 1.52%, to 1.73%, 1.65 to 1.80% and 63.36 to 68.70% respectively. Samples T3 and T4 with kidney bean flour incorporation had higher protein, dietary fibre and lower carbohydrate contents than samples T1 and T2 with no kidney bean flour incorporation. The calcium, potassium, magnesium, iron and zinc contents ranged from 36.14 – 45.72mg/100g, 105.40 – 128.72mg/100g, 29.60 – 46.81mg/100g, 3.89 – 5.12mg/100g and 2.01 –3.51mg/100g respectively. Incorporation of kidney bean flour enhanced the calcium, magnesium and iron contents in the biscuits. Sensory mean score values showed that samples T3 and T4 were the most preferred samples in terms of overall acceptability as their values were not significantly (p>0.05) difference from each other. It is evident from the study that acceptable biscuits of improved nutritional value and high dietary fibre content could be produced from whole wheat flour supplemented with acha and kidney beans flours. This will increase the utilization of these locally grown crops and reduce wheat importation into the country. The high fibre biscuit will also possess several health benefits.


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


2019 ◽  
Vol 121 (5) ◽  
pp. 496-507 ◽  
Author(s):  
Karima Laleg ◽  
Jérôme Salles ◽  
Alexandre Berry ◽  
Christophe Giraudet ◽  
Véronique Patrac ◽  
...  

AbstractThis study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten–wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.


2019 ◽  
Vol 25 (7) ◽  
pp. 618-629 ◽  
Author(s):  
Sabina Karp ◽  
Jarosław Wyrwisz ◽  
Marcin Andrzej Kurek ◽  
Agnieszka Wierzbicka

The biggest challenge in the production of gluten-free baked products is creating a structure without gluten while maintaining physicochemical and sensory properties. The aim of this study was to evaluate the possibility of applying oat β-glucan as the thickening and structure-making agent instead of xanthan (control sample), due to its pro-health technological properties, in yeast-leavened gluten-free cake. Thus, high-in-β-glucan oat fibre powder was incorporated into cake formulations as 5, 10, 15 and 20% replacement of rice or corn flour. The complex analysis of physicochemical and sensory properties was conducted, where texture and rheological aspects were the most important. An analysis of the correlation between rheological and physical properties was also conducted. Corn and rice cakes differed, but the results showed the increase of β-glucan, total dietary fibre, springiness, cohesiveness, storage (G′) and loss (G″) modulus and the decrease of firmness and lightness. Improvement of porosity and volume was also noticed. Significant correlation was observed among G′, G″, specific volume and texture components. Accelerated texture changes were noticed after 24 h of storage. To sum up, it is justified to incorporate oat fibre into gluten-free baked products, both to increase nutritional value and improve cake structure.


2020 ◽  
Vol 37 (2) ◽  
Author(s):  
Frank F. Velásquez-Barreto ◽  
Edson E. Ramirez-Tixe ◽  
Mariana D. Salazar-Irrazabal ◽  
Elias Salazar-Silvestre

Andean grains, widely distributed in the high areas of the Andean Highlands, can help to reduce malnutrition owing to their high content of protein and balance of essential amino acids. Recently, their consumption has changed as they are increasingly used for instant food mixtures. However, a better design and formulation are necessary to maintain Andean grains’ nutritional value and characteristics. In this study, we evaluated the physicochemical properties and acceptability of three formulations containing extruded corn (Zea mays L.), fava bean (Vicia faba L.), and quinoa (Chenopodium quinoa Willd) flours. Grain samples were collected from Choclococha, Acobamba, Huancavelica, Peru, and extruded at 95°C. Subsequently, three flour formulations were prepared. The formulation comprising 30% fava bean flour, 58% quinoa flour, and 12% corn flour consisted of 18.64% protein, 4.87% fat, 8.4% humidity, 2.99% ash, and 62.44% carbohydrates. This formulation with the highest quinoa flour content presented the highest acceptability in terms of color odor and flavor, and the highest protein content and digestibility (72.6%) of all analyzed formulations. Thermal analysis and pasting testing indicated that the formulation with the highest acceptability did not contain native starch; moreover, the proteins in this formulation were denatured.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Immaculata Banjoko ◽  
Koyum Ajuwon ◽  
Victor Rotimi ◽  
Abiodun Toku

Abstract Objectives To improve the nutritional values of corn flakes enriched with edible mushrooms Methods Corn was processed into grit flour by cleaning, cooking and blending while oyster mushrooms was cultivated using substrate such as palm bunches, cocoa waste and wheat bran which was then roasted, dried and milled to produce mushrooms flour. A blend of corn grit and mushrooms was prepared in various proportions for the production of flakes using the extrusion process, with blending ratios of corn grit: mushroom as follows: MDX (95:5); DMX (90:10); XYZ (85:15); UPX (75:25); and control 100% corn grit. The samples were produced at the same temperature and speed. The corn grit and mushroom blends were subjected to functional and sensory evaluation. Proximate analysis was carried out on the flakes. Results Result of proximate analysis showed that protein, fat and fiber contents increased significantly in some samples with increased mushroom inclusion while carbohydrate decreased with increase in mushroom inclusion. For protein, values ranged from 0.98% in control sample to 5.55% in sample UPX (75:25); fat content ranged from 1.11% in control sample to 5.27% in sample UPX (75:25). Carbohydrate content ranged from 83.59% in control samples to 72.49% in sample UPX. There was also an increase in ash content with values ranging from 0.33% in control sample to 1.79% in sample UPX. Fiber increased from 6.17% in control sample to 8.26% in sample UPX. However overall acceptability evaluation showed that sample DMX (90:10) had the best in terms of acceptability. Functional properties for water absorption capacity, bulk density and swelling index indicate values ranging from 5.77 in control sample and 4.42 in sample UPX. Bulk density had values of 0.69 to 0.8; for swelling index it ranged from 4.53 to 4.72 for the various tests respectively Conclusions Increased mushroom inclusions decreased dough strength in flakes produced. However, edible mushrooms have shown tremendous potentials for complimenting the diet of toddlers at appropriate inclusion ratios for optimal growth Funding Sources Self funding.


Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 371-379
Author(s):  
J.A. Adeyanju ◽  
G.O. Babarinde ◽  
B.F. Olanipekun ◽  
I.F. Bolarinwa ◽  
S.O. Oladokun

In this study, the suitability of wheat, acha and African yam bean composite flour in the development of cookies was investigated. Wheat, acha and African yam bean were blended into various proportions of flour mixes and used to produce cookies. The flour mixes were analyzed for the proximate, minerals composition, functional properties and anti-nutrients, while the cookies were evaluated for its sensory and physical properties. The proximate composition of the flours varied from 7.85-9.71%, 12.34-14.01%, 1.15- 1.86%, 1.21-1.49%, 1.65-1.92% and 70.01-76.11% for moisture, protein, fat, crude fiber, ash and carbohydrate content of the flour, respectively. The mineral content ranged from 10.11-13.12 mg/100 g, 52.65-61.76 mg/100 g, 130.71-211.76 mg/100 g, 111.97-130.84 mg/100 g and 14.81-20.43 mg/100 g for calcium, magnesium, potassium, phosphorus and sodium, respectively. The functional properties ranged from 0.76-0.80 g/cm3 ; 86.65- 188.11 g/g; 94.30-197.23 g/g; 569.23-699.54%; 5.68-6.44%; 61.50-125.50 sec, 73.75- 75.25% for bulk density, water absorption capacity, oil absorption capacity, swelling capacity, solubility, wettability and dispersiblity respectively. The anti-nutritional properties ranged from 37.67 to 46.73 mg/100 g, 5.27 to 5.57 mg/100 g and 32.91 to 35.10 mg/100 g for oxalate, phytate and tannin, respectively. The physical properties values ranged from 6.11-8.20 mm, 38.46-39.30 mm, 37.83-38.23 mm, 4.79-5.85, 5.35-7.49 g and 1.72-1.90 kg for thickness, diameter, height, spread ratio, weight and break strength respectively. Cookies from composite flours were not significantly (p>0.05) different from the control in overall acceptability. This shows the possibility of producing nutritious cookies with desirable organoleptic qualities from wheat, acha and African yam bean flour.


2019 ◽  
Vol 11 (1) ◽  
pp. 30-36
Author(s):  
Idowu Michael Ayodele ◽  
Adeola Abiodun Aderpju ◽  
Oke Emmanuel Kehinde ◽  
Amusa Ayodeji Joseph ◽  
Omoniyi Saheed Adewale

This study investigated the functional and pasting properties of wheat and tigernut pomace flour blends, as well as the sensory attributes of the meat pie obtained from the composite flour. Tigernut pomace flour was substituted for wheat flour in the amount of 2 –10%. Unsubstituted wheat flour served as the control. The composite blends were analysed for functional and pasting properties. The sensory attributes of the meat pie obtained from the composite flour were also determined. Bulk density, water absorption capacity, swelling power, and the solubility index of the blends ranged from 0.70 -0.75 g/mL, 0.62 -0.96%, 4.06 -4.47 g/g, and 2.45 -13.7% respectively. Peak, trough, breakdown, final, and setback viscosities, peak time, and pasting temperature ranged from 113.6 -135.9 RVU, 76.7 -90.2 RVU, 36.0 -45.8 RVU, 170 -183.7 RVU, 91.0 -93.6 RVU, 5.07 -6.03 min, and 88.4 -90.0 RVU respectively. In terms of appearance, the meat pie samples prepared from tigernut-substituted flour blends did not show significant difference (p &lt; 0.05) from the control sample. The control sample had the highest overall acceptability, although samples from the composite blends were also found to be acceptable. Hence, tigernut pomace flour could be substituted for wheat at the amount of 10% to produce an acceptable meat pie.


Sign in / Sign up

Export Citation Format

Share Document