scholarly journals Seismic Performance of High Rise Flat Slab Building with Various Lateral Load Resisting Systems

2016 ◽  
Vol 4 (Special Issue) ◽  
pp. 26-30
Author(s):  
Pooja Biradar ◽  
Kishor Kulkarni ◽  
Nikhil Jamble
2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983511
Author(s):  
Seonwoong Kim

The lateral load-resisting system of high-rise buildings in regions of low and moderate seismicity and strong wind such as the typhoon in the Korean peninsula considers the wind load as the governed lateral force so that the practical structural engineer tends to skip the evaluation against the seismic load. This study is to investigate wind-designed steel diagrid buildings located in these regions and check the possibility of the elastic design of them out. To this end, first, the diagrid high-rise buildings were designed to satisfy the wind serviceability criteria specified in KBC 2016. Then, the response spectrum analyses were performed under various slenderness ratio and wind exposures. The analyses demonstrated the good seismic performance of these wind-designed diagrid high-rise buildings because of the significant over-strength induced by the lateral load-resisting system of high-rise buildings. Also, the analysis results showed that the elastic seismic design process of some diagrid high-rise buildings may be accepted based on slenderness ratios in all wind exposures.


2018 ◽  
Vol 203 ◽  
pp. 06014
Author(s):  
Zafarullah Nizamani ◽  
Seah Kay Seng ◽  
Akihiko Nakayama ◽  
Mohamad Shariff Bin Omar Khan ◽  
Haider Bilal

Most of the residential buildings in Malaysia are not designed to withstand the seismic forces, while the high-rise buildings. However, since the Sumatra 2004 earthquake, there had been increasing concerns about the structure vulnerability in our country to earthquakes. Several recent studies had also revealed that Malaysia had the possibility to be influenced by both local and far field earthquakes. This study is conducted to analyze the vulnerability of a high rise building to local and far field earthquakes using Scia Engineer. Modal Response Spectrum method of Scia Engineer is used. The model is a 12 story hotel building from Ipoh, Perak. The designing code is the Eurocode with Malaysia Annex. Different Peak Ground Accelerations (PGA) that represents the local and far field earthquakes is acted on the model to obtain the seismic performance. The deformation of the building by the seismic combinations is compared to the ASCE-7 design to evaluate the vulnerability. Research of seismic performance of the flat slab system is also conducted along with beam frame system. The result shows that the building is in a safe condition in terms of deformation and the seismic performance of the flat slab system is advantageous.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
M. K. Laghate ◽  
M. K. Laghate

Diagrid structures are evolved as one of the best structural system for high rise buildings. In this study seismic performance of 36 stories Tube-in-Tube Diagrid Structure with various diagonal slopes is evaluated by Non Linear Static Analysis. Tube-in-Tube diagrid structures are modified Diagrid structures in which gravity core is replaced with Diagrid core. Single tube diagrid structure is also studied for comparison. The structure is pushed gradually proportional to fundamental Mode shape. The analysis results shows that Tube-in-Tube structure possess higher stiffness and Lateral Load resisting capacity. The pushover analysis demonstrates that diagrid core can perform better by hardening the structure. According to analysis results, the Tube-in-Tube diagrid structure shows higher non-linear lateral displacement. It was observed that as the diagrid angle increases the stiffness and lateral load carrying strength decreases.


2021 ◽  
Vol 238 ◽  
pp. 112194
Author(s):  
Yuxin Pan ◽  
Thomas Tannert ◽  
Kuldeep Kaushik ◽  
Haibei Xiong ◽  
Carlos E. Ventura

2014 ◽  
Vol 580-583 ◽  
pp. 1551-1554
Author(s):  
Gen Tian Zhao ◽  
Xu Ting Kou

With the project case, the seismic performance of girder transfer floor member and the plate transfer floor member were discussed. Contrast calculation was carried out in girder transfer floor member and the plate transfer floor member with SATWE method to analyze its reasonable and unreasonable places. Based on overall structure calculation of a high rise building, the seismic design requirements for buildings applying thick transferring plate have been presented. The conclusion is that the seismic performance of girder transfer floor member is more advantageous and affordable, more convenient and more economical in ingredients.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Gang Wang ◽  
Jinlun Cai ◽  
Junchen Guo

<p>With the continuous development and progress of society, the structure of high-rise buildings has been paid more and more attention by the engineering community. However, the existing high- rise structure design methods often have a lot of redundancy and have a lot of room for optimization. Most of the existing seismic design methods of high-rise structures are based on engineering experience and manual iterative methods, so that the efficiency of design can not meet the needs of the society. if the method of design automation is adopted, the workload of designers can be greatly reduced and the efficiency of structural design can be improved. Based on the digital modeling theory, this paper proposes a MAD automatic design algorithm, in which the designer provides the initial design of the structure, and the algorithm carries out the modeling, analysis, optimization and design of each stage of the structure, and finally obtains the optimal structure. The structural design module of this algorithm starts from the component level, when the component constraint design meets the limit requirements of the specification, it enters and completes the component constraint design and the global constraint design of the structure in turn. In this paper, taking a ten-story braced steel frame high-rise structure as an example, the optimal design is carried out, and its seismic performance is analyzed. the results show that the MAD automatic design algorithm can distribute the materials to each part reasonably, which can significantly improve the seismic performance of the structure and realize the effective seismic design.</p>


Sign in / Sign up

Export Citation Format

Share Document