Seismic Performance Evolution of Tube-in-Tube Diagrid Structure Using Non Linear Static Analysis

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
M. K. Laghate ◽  
M. K. Laghate

Diagrid structures are evolved as one of the best structural system for high rise buildings. In this study seismic performance of 36 stories Tube-in-Tube Diagrid Structure with various diagonal slopes is evaluated by Non Linear Static Analysis. Tube-in-Tube diagrid structures are modified Diagrid structures in which gravity core is replaced with Diagrid core. Single tube diagrid structure is also studied for comparison. The structure is pushed gradually proportional to fundamental Mode shape. The analysis results shows that Tube-in-Tube structure possess higher stiffness and Lateral Load resisting capacity. The pushover analysis demonstrates that diagrid core can perform better by hardening the structure. According to analysis results, the Tube-in-Tube diagrid structure shows higher non-linear lateral displacement. It was observed that as the diagrid angle increases the stiffness and lateral load carrying strength decreases.

2018 ◽  
Vol 192 ◽  
pp. 02002 ◽  
Author(s):  
Yanuar Haryanto ◽  
Buntara Sthenly Gan ◽  
Nanang Gunawan Wariyatno ◽  
Eva Wahyu Indriyati

We evaluated the performance of a high-rise residential building model in Purwokerto, Indonesia due to the seismic load. The evaluation was performed based on seismic loads given in the 2002 and 2012 Indonesian National Standard (SNI) using linear static analysis, dynamic response analysis and pushover analysis. Based on the linear static analysis, the drift ratio decreased by an average of 34.42 and 32.61% for the X and Y directions respectively. Meanwhile, based on the dynamic response analysis, the drift ratio also decreased by an average of 30.74 and 27.33% for the X and Y directions respectively. In addition, the pushover analysis indicates that the performance of this high-rise residential building model is still at Immediate Occupancy (IO) level. The post-earthquake damage state in which the building remains safe to occupy, essentially retaining the pre-earthquake design strength and stiffness of the structure. The risk of life-threatening injury as a result of structural damage is very low. Although some minor structural repairs may be appropriate, these would generally not be required prior to re-occupancy.


Author(s):  
Yasser Salem ◽  
Devindar Aulakh ◽  
Giuseppe Lomiento

The diagrid structure system has recently gained popularity as an effective structural system for high rise buildings. The effectiveness of the system relies on the truss action developed by the perimeter diagrid system to resist lateral loads. In active seismic zones, ductile performance of the lateral resisting system is highly desired to dissipate energy developed in the structure from the ground shaking. In this study, the seismic performance of the diagrid system is investigated. Non-linear static pushover analysis followed by non-linear dynamic analysis were conducted to study the inelastic behaviour of diagrid systems. Through methods of analysis, the response modification factor of the modelled system was calculated. The results indicate that the reserve strength of a diagrid system is comparable to and often greater than that of many other lateral structure systems, such as steel special truss moment resisting frames and other structural systems as prescribed by the ASCE 7-10.


2021 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Ilaria Capanna ◽  
Angelo Aloisio ◽  
Franco Di Fabio ◽  
Massimo Fragiacomo

The city of L’Aquila (Italy) includes a significant amount of masonry palaces erected from the middle of the 13th century up to the first half of the 20th century. This paper focuses on the seismic response of a masonry palace built during the first half of the 20th century and characterized by regularity in plan and elevation. The authors investigate the seismic response by varying a suite of modelling parameters that express the actual scatter of the mechanical properties typical of the masonry palaces erected in L’Aquila. The authors discuss the seismic performance exhibited by this building during the 2009 earthquake. Then, they assess the sensitivity of the selected building’s seismic performance via non-linear static analysis to the mechanical properties of masonry, the in-plane stiffness of the floors, and the mechanical resistance of the spandrels. The parametric analysis shows that the three variables markedly affect the shear resistance, the ultimate displacement, and the behavior factors. The fragility functions were then estimated from the results of non-linear static analysis. A significant scatter of the probability of collapse for the considered limit states reveals the limitations of typological approaches for masonry palaces.


2011 ◽  
Vol 488-489 ◽  
pp. 359-362
Author(s):  
Jorge A. Avila ◽  
Julio C. Manzano

With 3-story and 6-story RC buildings of ductile frames, previously designed, non-linear static analysis with increased monotonically lateral loads (Push-over) are made in order to determine its collapse and their responses against the inelastic seismic analysis results with the SCT-EW-85 record are compared. It is designed with the Principal Body and with the Appendix A conditions of the Seismic Technical Norms of the Mexico City Code (RDF-04), satisfying the maximum story distortion limits of the service and collapse conditions; the buildings (offices) are in the IIIb compressible seismic zone. The non-lineal responses were determined with nominal resistance and over-resistance effects. For the non-linear static analysis with increased monotonically lateral loads, was important to select the type of lateral forces distribution. The comparison were made with base shear force–roof lateral displacement relations.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2018 ◽  
Vol 11 ◽  
pp. 331-338 ◽  
Author(s):  
Pietro Croce ◽  
Maria Luisa Beconcini ◽  
Paolo Formichi ◽  
Paolo Cioni ◽  
Filippo Landi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document