scholarly journals Synthesis of Ziegler-Natta Catalyst using Malaysian Ilmenite Derived TiCl4 via Recrystallization Method: A Statistical Approach

2020 ◽  
Vol 15 (3) ◽  
pp. 687-697
Author(s):  
Sanjith Udayakumar ◽  
Najwa Ibrahim ◽  
Chan Yong Chien ◽  
Shaikh Abdul Rahman Shaik Abdul Wahab ◽  
Ahmad Fauzi Mohd Noor ◽  
...  

In the current study, Ziegler-Natta (Z-N) catalyst was synthesized via recrystallization method using MgCl2 as a support, AlCl3 as an activator and TiCl4 as a transition metal source. The TiCl4 used in the study was derived from Malaysian ilmenite through a sequential pyrometallurgical and hydrometallurgical process of ilmenite concentrate conversion to TiCl4. The recrystallization method of synthesis of the heterogeneous Z-N catalyst was studied by varying the synthesis parameters, such as the combined amount of MgCl2 and AlCl3, temperature, and amount of TiCl4, using statistical design of experiments. The investigation aimed at determining the best conditions for synthesizing the heterogeneous Z-N catalyst. The synthesis conditions posed a significant influence on the Ti content present in the catalyst product. The morphological and elemental analysis of SEM-EDX showed good spherical nature of the prepared catalysts. The XRD phase analysis detected the peaks of MgCl2, MgCl2-Ethanol, MgCl2/TiClx, and TiO2. The IR spectra confirmed the presence of the Mg-Cl bond at 1635 cm−1 and Ti-Cl bonds at 602 cm-1 and 498 cm-1. The produced catalyst contained a small amount of TiO2, which could be due to the seepage of moisture during the analysis or storage of the sample. The most favourable combination of the studied parameters was determined based on the Ti content in the catalyst product. Therefore, the best conditions for synthesizing the heterogeneous Z-N catalyst with high Ti content (181.1 mg/L) was at a combined amount of 2 g of MgCl2 for 6 g of AlCl3, crystallization temperature of 80 °C, and 2 mL dosage of TiCl4. Copyright © 2020 BCREC Group. All rights reserved

2016 ◽  
Vol 701 ◽  
pp. 52-56 ◽  
Author(s):  
Maisara Azad Mat Akhir ◽  
Khairudin Mohamed ◽  
Sheikh Abdul Rezan ◽  
Hooi Ling Lee ◽  
Siti Suhaila M. Izah

This paper studies the chemical vapor deposition (CVD) synthesis conditions for tin oxide (SnO2) nanowires (NWs) by using statistical design of experiment (DOE). The influences of synthesis parameters (growth temperature, deposition time and flow rate of argon) on SnO2 NWs diameter were studied. From perturbation analysis with DOE, it was found that temperature gave the most significant effect to the diameter of SnO2 NWs via CVD method followed by flowrate of argon and deposition time. Furthermore, based on the cube graph, the smallest SnO2 NWs (~18 nm) can be obtained at temperature of 850 °C with argon flow rate of 100 sccm using a deposition time of 60 min. On the other hand, the largest SnO2 NWs (~248 nm) can be produced at 900 °C.


1992 ◽  
Vol 28 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Fernanda M. B. Coutinho ◽  
Marcos A. S. Costa ◽  
Luiz C. Santa Maria

1993 ◽  
Vol 31 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Marcos A. S. Costa ◽  
Fernanda M. B. Coutinho ◽  
Luiz C. Santa Maria

2013 ◽  
Vol 12 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Saroj Sundar Baral ◽  
Ganesan Surendran ◽  
Namrata Das ◽  
Polisetty Venkateswara Rao

Author(s):  
Alexander Yakimov ◽  
Jun Xu ◽  
Keith Searles ◽  
Wei-Chih Liao ◽  
Giuseppe Antinucci ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1246
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Mona Stefanakis ◽  
Marc Brecht ◽  
Thomas Chassé ◽  
...  

We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.


Polymer ◽  
2021 ◽  
Vol 216 ◽  
pp. 123408
Author(s):  
Odda Ruiz de Ballesteros ◽  
Finizia Auriemma ◽  
Rocco Di Girolamo ◽  
Anna Malafronte ◽  
Miriam Scoti ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


Sign in / Sign up

Export Citation Format

Share Document