scholarly journals Interface Characterization of Different Types of Fibers in Engineered Cementitious Composites (ECC)

2017 ◽  
Vol 14 (01) ◽  
pp. 08-14
Author(s):  
J. J. Makwana ◽  
Dr. J. D. Rathod
Author(s):  
Hassan Noorvand ◽  
Gabriel Arce ◽  
Marwa Hassan ◽  
Tyson Rupnow ◽  
Louay N. Mohammad

Engineered cementitious composites (ECCs) are a type of micromechanically-designed cementitious composite reinforced with a moderate volume fraction of short fiber, typically 2% by volume. ECCs form steady-state multiple cracking that considerably improves the tensile strength and ductility of traditional concrete. In this study, the properties of matrix and the interface of ECCs were tailored through the use of crumb rubber, different types of sand, and different replacement levels of cement with fly ash. The study examined the effect of sand replacement with crumb rubber (20% by volume), two types of river sands (coarse and fine), increasing the content of class F fly ash (up to 75% cement replacement), and low fiber content (1.75%) on the mechanical properties of ECCs. Compressive strength, uniaxial tensile, and third-point bending tests were performed to characterize the properties of ECC mixes. Experimental results demonstrated that increasing fly ash content and using crumb rubber favored ductility of the composites. However, higher fly ash contents and a low water-to-binder (W/B) ratio produced lower strengths as these limited the pozzolanic reaction of fly ash making it act partially as a filler. While incorporation of crumb rubber showed adverse effects on the tensile strength of ECC materials (up to 26% decrease), the tensile ductility of ECC materials improved significantly (up to 434% improvement). Moreover, the implementation of different types of sand produced minor effects on the mechanical properties of ECCs. Overall, a tradeoff between the strength and ductility of the composites was detected, which highlights the implications of matrix/interface tailoring in the overall performance of ECC.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Bruna B. Przybulinski ◽  
Rodrigo G. Garcia ◽  
Maria Fernanda de C. Burbarelli ◽  
Claudia M. Komiyama ◽  
Deivid Kelly Barbosa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document