scholarly journals Evaluation of High Performance Concrete by Partial Replacement of Cement with Silica Fume Natural Sand and Manufactured Sand

2017 ◽  
Vol 14 (04) ◽  
pp. 13-17
Author(s):  
M. Gomathi ◽  
K. Prem Kumar
Vestnik MGSU ◽  
2019 ◽  
pp. 102-117 ◽  
Author(s):  
Duc Vinh Quang Nguyen ◽  
Olga V. Aleksandrova ◽  
Yuriy M. Bazhenov

Introduction. This study focuses on the use of silica fume partially replacing cement with 0, 5, 7.5, 10, 12.5 and 30 % constant replacement of fly ash by weight of cement in concrete. Concrete is probably the most extensively used construction material in the world. But the conventional concrete is losing its uses with time and high-performance concrete (HPC) is taking that place. HPC has superior mechanical properties and durability to normal strength concrete. Because of, the microstructure of HPC is more homogeneous than that of normal concrete (NC) due to the physical and chemical contribution of the mineral admixtures as well as it is less porous due to reduced w/c ratio with the addition of a superplasticizer. The inclusion of additives helped in improving the properties of concrete mixes due to the additional reduction in porosity of cement paste and improving the particle packing in the interfacial transition zone (between cement paste and the aggregates).In this experimental investigation the behavior of HPC with silica fume and fly ash with and without quartz powder were studied. The water-binder ratio was kept 0.3 and 20 % quartz flour as partial replacement of fine aggregate for all cases. Materials and methods. Used materials in Vietnam, as follow, Sulfate-resisting Portland cement - PCSR40 (type V) of company Luks Cement (Vietnam) Limited was used in the work. Crushed granite of fraction 9.5…20 mm - as coarse aggregate, Natural sand from Huong river of 0.15…2.5 mm fraction with the fineness modulus of about 3.0 and quartz powder with an average particle size of 5…10 μm were used as fillers; Sika® Viscocrete®-151 is a superplasticizer based on a blend of 3rd generation PCE polymers was used as a plasticizing admixture. The flg ash from Pha Lai thermal power plant and Sika silica Sikacrete® PP1 (particle size < 0.1 μm) was used as a mineral active admixture. The study of strength and technological properties of high-performance concrete was performed by using standard methods. Results. Established by icate that, the workability and strength increase at a certain level and after that, they decline with further increase in the replacement level of silica fume is 12.5 %, on the basis of 30 % FA replacement, the incorporation of 10 % SF showed equivalent or higher mechanical properties and durability compared to the reference samples. Conclusions. HPC consists of mineral admixtures such as silica fume and fly ash use combine quartz powder and superplasticizer helped in improving the strength and durability of concrete mixes due to the additional reduction in porosity of cement paste and an improved interface between it and the aggregate. With 30 % fly ash is optimum dosage used to replacement of cement, incorporation 10 % SF (by weight) and combine of partial replacement of fine aggregate by 20 % quartz powder. On the other hand, a few mathematical equations can be used to derive the durability properties of concrete based on its compressive strength.


Author(s):  
Selvapriya R

In the recent past, there have been considerable attempts for improving the properties of concrete with respect to strength and durability, especially in aggressive environments. High performance concrete appears to be better choice for a strong and durable structure.  A large amount of   by-product   or   wastes such as fly-ash, copper slag, silica fume etc.  Are generated by industries, which causes environmental as well as health problems due to dumping and disposal. Proper introduction of silica fume in concrete improves both the mechanical and durability characteristics of the concrete. This paper present literature review on replacement of Cement by Silica Fume which includes current and future trends of research.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yassir M. Abbas ◽  
M. Iqbal Khan

In this study, the optimum dosages of silica fume (SF) and natural pozzolan (NP) were experimentally and statistically assessed for the best strength and durability properties of high-performance concrete (HPC). SF and NP were used as partial replacement Portland cement (PC) by up to 12 and 25 wt.%, respectively. Additionally, the prediction models based on second-level factorial (SLF) and response surface design (RSD) were formulated to estimate the HPC properties and their validation. The SLF-based model was further employed to investigate the significance and interactions of the PC, SF, and NP blends. The 28-day strength of the blended-cement HPC with a water-to-binder ratio w / b of 0.25 was generally higher than that of the control concrete. The positive synergy of PC–NP–SF was also observed in the HPC permeability. The paired t -test of the mean square error (MSE) of the SLF- and RSD-based models revealed that the MSE of the former was notably less than that of the latter. These results established the superiority of the SLF-based model over the RSD-based model. Therefore, the SLF-based model was further employed to investigate the importance of various binders.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Sign in / Sign up

Export Citation Format

Share Document