scholarly journals Optimization of Arabian-Shield-Based Natural Pozzolan and Silica Fume for High-Performance Concrete Using Statistical Design of Experiments

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yassir M. Abbas ◽  
M. Iqbal Khan

In this study, the optimum dosages of silica fume (SF) and natural pozzolan (NP) were experimentally and statistically assessed for the best strength and durability properties of high-performance concrete (HPC). SF and NP were used as partial replacement Portland cement (PC) by up to 12 and 25 wt.%, respectively. Additionally, the prediction models based on second-level factorial (SLF) and response surface design (RSD) were formulated to estimate the HPC properties and their validation. The SLF-based model was further employed to investigate the significance and interactions of the PC, SF, and NP blends. The 28-day strength of the blended-cement HPC with a water-to-binder ratio w / b of 0.25 was generally higher than that of the control concrete. The positive synergy of PC–NP–SF was also observed in the HPC permeability. The paired t -test of the mean square error (MSE) of the SLF- and RSD-based models revealed that the MSE of the former was notably less than that of the latter. These results established the superiority of the SLF-based model over the RSD-based model. Therefore, the SLF-based model was further employed to investigate the importance of various binders.

Vestnik MGSU ◽  
2019 ◽  
pp. 102-117 ◽  
Author(s):  
Duc Vinh Quang Nguyen ◽  
Olga V. Aleksandrova ◽  
Yuriy M. Bazhenov

Introduction. This study focuses on the use of silica fume partially replacing cement with 0, 5, 7.5, 10, 12.5 and 30 % constant replacement of fly ash by weight of cement in concrete. Concrete is probably the most extensively used construction material in the world. But the conventional concrete is losing its uses with time and high-performance concrete (HPC) is taking that place. HPC has superior mechanical properties and durability to normal strength concrete. Because of, the microstructure of HPC is more homogeneous than that of normal concrete (NC) due to the physical and chemical contribution of the mineral admixtures as well as it is less porous due to reduced w/c ratio with the addition of a superplasticizer. The inclusion of additives helped in improving the properties of concrete mixes due to the additional reduction in porosity of cement paste and improving the particle packing in the interfacial transition zone (between cement paste and the aggregates).In this experimental investigation the behavior of HPC with silica fume and fly ash with and without quartz powder were studied. The water-binder ratio was kept 0.3 and 20 % quartz flour as partial replacement of fine aggregate for all cases. Materials and methods. Used materials in Vietnam, as follow, Sulfate-resisting Portland cement - PCSR40 (type V) of company Luks Cement (Vietnam) Limited was used in the work. Crushed granite of fraction 9.5…20 mm - as coarse aggregate, Natural sand from Huong river of 0.15…2.5 mm fraction with the fineness modulus of about 3.0 and quartz powder with an average particle size of 5…10 μm were used as fillers; Sika® Viscocrete®-151 is a superplasticizer based on a blend of 3rd generation PCE polymers was used as a plasticizing admixture. The flg ash from Pha Lai thermal power plant and Sika silica Sikacrete® PP1 (particle size < 0.1 μm) was used as a mineral active admixture. The study of strength and technological properties of high-performance concrete was performed by using standard methods. Results. Established by icate that, the workability and strength increase at a certain level and after that, they decline with further increase in the replacement level of silica fume is 12.5 %, on the basis of 30 % FA replacement, the incorporation of 10 % SF showed equivalent or higher mechanical properties and durability compared to the reference samples. Conclusions. HPC consists of mineral admixtures such as silica fume and fly ash use combine quartz powder and superplasticizer helped in improving the strength and durability of concrete mixes due to the additional reduction in porosity of cement paste and an improved interface between it and the aggregate. With 30 % fly ash is optimum dosage used to replacement of cement, incorporation 10 % SF (by weight) and combine of partial replacement of fine aggregate by 20 % quartz powder. On the other hand, a few mathematical equations can be used to derive the durability properties of concrete based on its compressive strength.


2016 ◽  
Vol 13 (5) ◽  
pp. 447-452 ◽  
Author(s):  
Sabah Ben Messaoud ◽  
Bouzidi Mezghiche

Purpose The aim of this paper is to make lightweight high-performance concrete (LWHPC) with high economic performance from existing materials on the Algerian market. Concrete with high values with regard to following properties: mechanical, physical, rheological and durability. Because of the implementation of some basic scientific principles on the technology of LWHPC, this study is part of the valuation of local materials to manufacture LWHPC with several enhanced features such as mechanical, physical chemical, rheological and durability in the first place and with regard to the economic aspect in the second place. Design/methodology/approach The experimental study focused on the compatibility of cement/superplasticizer, the effect of water/cement ratio (W/C 0.22, 0.25, 0.30), the effect of replacing a part of cement by silica fume (8 per cent), the effect of combined replacement of a part of cement by silica fume (8 per cent) and natural pozzolan (10 per cent, 15 per cent, 25 per cent) and the effect of fraction of aggregate on properties of fresh and hardened concrete using the mix design method of the University of Sherbrooke, which is easy to realize and gives good results. Findings The results obtained allow to conclude that it is possible to manufacture LWHPC with good mechanical and physical properties in the authors’ town with available materials on the Algerian market. The mix design and manufacture of concrete with a compressive strength at 28 days reaching 56 MPa or more than 72 MPa is now possible in Biskra (Algeria), and it must no longer be used only in the experimental field. The addition of silica fume in concrete showed good strength development between the ages of 7 and 28 days depending on the mix design; concrete containing 8 per cent silica fume with a W/B (water/binder) of 0.25 has a compressive strength higher than other concretes, and concrete with silica fume is stronger than concrete without silica fume, so we can have concrete with a compressive strength of 62 MPa for W/C of 0.25 without silica fume. Then, one can avoid the use of silica fume to a resistance of concrete to the compressive strength of 62 MPa and a slump of 21 cm, as silica fume is the most expensive ingredient in the composition of the concrete and is very important economically. A main factor in producing high-strength concrete above 72 MPa is to use less reactive natural pozzolan (such as silica fume) in combination with silica fume and a W/B low of 0.25 and 0.30. The combination of silica fume and natural pozzolan in mixtures resulted in a very dense microstructure and low porosity and produced an enhanced permeability of concrete of high strength, as with resistance to the penetration of aggressive agents; thus, an economical concrete was obtained using this combination. Research limitations/implications The study of the influence of cementitious materials on concrete strength gain was carried out. Other features of LWHPC such as creep, cracking, shrinkage, resistance to sulphate attack, corrosion resistance, fire resistance and durability should be also studied, because there are cases where another feature is most important for the designer or owner than the compressive strength at 28 days. Further studies should include a range of variables to change mixtures significantly and determine defined applications of LWHPC to produce more efficient and economical concretes. It is important to gather information on LWHPC to push forward the formulation of characteristics for pozzolan concrete for the building industry. Practical implications The LWHPC can be used to obtain high modules of elasticity and high durability in special structures such as marine structures, superstructures, parking, areas for aircraft/airplane runways, bridges, tunnels and industrial buildings (nuclear power stations). Originality/value The novel finding of the paper is the use of crystallized slag aggregates and natural pozzolan aggregates to obtain LWHPC.


Author(s):  
Selvapriya R

In the recent past, there have been considerable attempts for improving the properties of concrete with respect to strength and durability, especially in aggressive environments. High performance concrete appears to be better choice for a strong and durable structure.  A large amount of   by-product   or   wastes such as fly-ash, copper slag, silica fume etc.  Are generated by industries, which causes environmental as well as health problems due to dumping and disposal. Proper introduction of silica fume in concrete improves both the mechanical and durability characteristics of the concrete. This paper present literature review on replacement of Cement by Silica Fume which includes current and future trends of research.


2013 ◽  
Vol 377 ◽  
pp. 92-98
Author(s):  
Mohammad Iqbal Khan

Analytical models for compressive strength and tensile strength of high performance concrete are presented. High performance concrete was developed using binary and ternary blending combinations consisting of ordinary Portland cement, pulverised fuel ash and silica fume. Pulverised fuel ash and silica fume were incorporated as partial cement replacements for the preparation of various combinations of blended systems. Compressive strength and tensile strength of concrete containing ordinary Portland cement, pulverised fuel ash and silica fume at various ages are reported. Based on the experimentally obtained results, analytical prediction models were developed. These models enabled the establishment of isoresponse contours showing the interactive influence between the various parameters investigated.


1998 ◽  
Vol 25 (3) ◽  
pp. 391-400 ◽  
Author(s):  
MDA Thomas ◽  
K Cail ◽  
R D Hooton

The effects of silica fume on the properties of plastic and hardened concrete are now fairly well-established. If properly used, silica fume imparts significant improvement to the strength and durability of concrete; and the availability of this material together with high-range water reducers (superplasticizers) has been largely responsible for the development of high-strength and high-performance concretes. Silica fume has been used in the Canadian cement and concrete industry for over 15 years. Early use was driven by economy, since concrete of a given strength grade could be produced at lower cementitious material content (and cost) if silica fume was incorporated in the mix due to the initial low selling price of the material. The construction boom of the mid to late 1980s saw the exploitation of high-strength silica fume concrete for high-rise construction. By the 1990s, concerns over the deteriorating infrastructure had shifted the focus to concrete durability and silica fume was finding applications in high-performance concrete. Today, silica fume is perhaps the material of choice for engineers designing concrete to withstand aggressive exposure conditions. This paper documents the major developments in the use of silica fume in Canada and discusses the wide range of applications for which the product may be used to beneficial effect.Key words: blended cement, Canada, concrete, high-performance, silica fume.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Sign in / Sign up

Export Citation Format

Share Document