scholarly journals Tool Wear Reduction Effect of Water-Miscible Cutting Fluid in End Milling of Carbon Fiber Reinforced Plastic

2017 ◽  
Vol 07 (03) ◽  
pp. 28-39
Author(s):  
Hironori Matsuoka
2015 ◽  
Vol 9 (4) ◽  
pp. 356-364 ◽  
Author(s):  
Satoru Maegawa ◽  
◽  
Yuta Morikawa ◽  
Shinya Hayakawa ◽  
Fumihiro Itoigawa ◽  
...  

This paper discusses tool-wear processes in the milling of carbon fiber-reinforced plastic (CFRP) laminates. Plane down-milling tests with unidirectional and cross-directional CFRP laminates were performed using two types of cutting tools made of tungsten carbide and polycrystalline diamond. Measurements of the changes in the cutting forces and tool-wear widths over the cutting distance revealed that the fiber orientation direction in the CFRP laminates relative to the tool-traveling direction is an important parameter to determine the tool-wear processes. Additionally, based on obtained experimental results, a wear parameter to characterize cutting tool wear is introduced. This parameter can accurately explain the relationship between the worn tool-edge profiles and the processed-surface quality.


2015 ◽  
Author(s):  
Dave (Dae-Wook) Kim ◽  
Aaron Beal ◽  
Patrick Kwon

This paper reviews the nature of hole defects and postulates the cause of hole defects resulting from the drilling process of Carbon Fiber Reinforced Plastic (CFRP)-Titanium (Ti) stacked panels using tungsten carbide (WC) and polycrystalline diamond (PCD) twist drills. The parameters that describe the hole quality of the CFRP-Ti stacks include CFRP entry hole delamination, hole diameter and roundness, inner hole surface roughness, CFRP hole profile, CFRP-Ti inter-plate damage, and Ti exit burr. They are caused by heat generation during drilling as well as hot Ti chips and adhesion, Ti burr formation, tool instability, and tool geometry change due to tool wear. For the WC drills, large flank wear and margin wear occurred at the high spindle speed condition, resulting in a reduction of the hole size and an increase of the hole roundness and CFRP-Ti interface damage. At the low spindle speed condition, tool geometry was changed due to the large edge rounding. This resulted in large fiber pull-out at the CFRP hole surface. Ti entry burrs caused damage associated with fiber removal and matrix discoloring at the bottom of the CFRP panel and this inter-plate damage was observed to increase with tool wear. When compared with the WC tool at the same speed condition, the PCD drill maintained relatively small hole defects under all parameters.


Author(s):  
Fan Zou ◽  
Jiaqiang Dang ◽  
Xiaojiang Cai ◽  
Qinglong An ◽  
Weiwei Ming ◽  
...  

The new developed metal/composite co-cured material composed of carbon fiber–reinforced plastic and Al phases has been increasingly applied for manufacturing of attitude control flywheel in aerospace industry. However, drilling of co-cured material is still a challenging task to produce holes with high quality and low cost in the assembly chain and dynamic balance debugging of attitude control flywheel. In other words, the relevant mechanisms and experimental findings involved in the drilling process of carbon fiber–reinforced plastic/Al co-cured material is not clearly defined, which impedes the progress of attitude control flywheel production. To this end, this article specially addresses the experimental studies on the drilling process of carbon fiber–reinforced plastic/Al co-cured material with standard TiAlN-coated cemented carbide twist drill. The significance of this work aims to reveal the regardful cutting responses of the hole characteristics and tool wear modes during the practical drilling process of co-cured material. A full factorial experiment including three levels of feed rate and four levels of cutting speed was performed. The hole diameter shows different values in different positions while it indicates consistent pattern regardless of the cutting variables: the largest in the Al phase, followed by the upper and lower carbon fiber–reinforced plastic phases, respectively. Grooves and matrix degradation are the major machining defects for carbon fiber–reinforced plastic layers, while a great chip debris adhered to the machined surface is the case for Al layer. Subsequent wear analysis showed that abrasion was mainly maintained at the vicinity of major/minor cutting edges and drill edge corner, followed by chip adhesion on the chisel edge region. Carbide substrate of drill flank face is exposed, and thereafter cavities are formed under the strong mechanical abrasion. These results could provide several implications for industrial manufacturers during the attitude control flywheel production.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


Sign in / Sign up

Export Citation Format

Share Document