scholarly journals Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space

2013 ◽  
Vol 5 (5) ◽  
pp. 27-36
Author(s):  
Aravind Narayan Aravind Narayan
2009 ◽  
Vol 18 (10) ◽  
pp. 2145-2149
Author(s):  
YOSHIHIRO ARITOMO

In heavy nucleus collision experiments, the fusion-fission cross section is derived from counting mass-symmetric fission events. However, a discrepancy exists between the experimental and theoretical estimations of the fusion cross section. We attempt to clarify the origin of the discrepancy and remove it by performing a dynamical calculation. The trajectory calculation has been performed in three-dimensional coordinate space with the Langevin equation.


2016 ◽  
Vol 57 ◽  
Author(s):  
Giedrius Stabingis

Spatial Classification Rule with Distance (SCRD) method is used in two dimensional coordinate system, which limits the usage of existing spatial information in MRI, CT and other three dimensional (layered) images. The SCRD method is extended to be applied in three dimensional coordinate space. Artificial experiment is performed in order to show ability to use SCRD method with three dimensional medical or other similar images where training sample is available.


2010 ◽  
Vol 25 (21n23) ◽  
pp. 2001-2002
Author(s):  
SHUICHIRO EBATA ◽  
T. NAKATSUKASA ◽  
T. INAKURA ◽  
Y. HASHIMOTO ◽  
K. YABANA

We derive the Canonical-basis Time-Dependent Hartree-Fock-Bogoliubov (CbTDHFB) equations using time-dependent variational principle with a special pairing energy functional. We obtain the isoscalar quadrupole strength functions for Magnesium isotopes with small-amplitude CbTDHFB calculation in the three-dimensional coordinate-space representation.


2002 ◽  
Vol 124 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Tammy L. Haut Donahue ◽  
M. L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (i.e., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1819
Author(s):  
Borys Basok ◽  
Borys Davydenko ◽  
Anatoliy M. Pavlenko

The article presents the modeling of the dynamics of the vapor-gas mixture and heat and mass transfer (sorption-desorption) in the capillary structure of the porous medium. This approach is underpinned by the fact that the porous structure is represented by a system of linear microchannels oriented along the axes of a three-dimensional coordinate system. The equivalent diameter of these channels corresponds to the average pore diameter, and the ratio of the total pore volume to the volume of the entire porous material corresponds to its porosity. The entire channel area is modeled by a set of cubic elements with a certain humidity, moisture content, pressure and temperature. A simulation is carried out taking into account the difference in temperatures of each of the phases: solid, liquid and gas.


Sign in / Sign up

Export Citation Format

Share Document