scholarly journals Strain effects on electronic, optical properties and carriers mobility of Cs2SnI6 double perovskite: A promising photovoltaic material

Author(s):  
B. Rezini ◽  
T. Seddik ◽  
R. Mouacher ◽  
Tuan Vu ◽  
Mohammed Batouche ◽  
...  

Owing to the fascinating optoelectronic and photovoltaic properties, perovskite halide materials have attracted much attention for solar cells applications. Using the first-principles approaches, we present here results of calculations of the strain effects on electronic and optical properties as well as carriers mobility of CsSnI double perovskite. The calculated band gap energy of unstrained CsSnI is about 1.257 eV when using Tran-Blaha modified Becke Johnson (mBJ) exchange potential that is in fair agreement with experimental measurements. Under the applied strains, this band gap value increases up to 1.316 eV for -4% compressive strain and decreases till 1.211 eV for 4% tensile strain. This effect is mainly due to the fact that the conduction band minimum shifts under compressive and tensile strains. From carrier mobility calculations, we notice that under tensile strain both hole and electron carrier mobilitiy diminishes, whereas the carrier mobility increases by 25.7 % for electron and by 15 % for holes under -4% compressive strain. Moreover, the optical analysis reveals that applied strain can affect the optical properties of CsSnI perovskite.

2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


2001 ◽  
Vol 79 (17) ◽  
pp. 2758-2760 ◽  
Author(s):  
J. Novák ◽  
S. Hasenöhrl ◽  
M. I. Alonso ◽  
M. Garriga

2020 ◽  
Vol 93 (5) ◽  
pp. 455-469
Author(s):  
H. Zitouni ◽  
N. Tahiri ◽  
O. El Bounagui ◽  
H. Ez-Zahraouy

2018 ◽  
Vol 36 (4) ◽  
pp. 668-674 ◽  
Author(s):  
Reşit Özmenteş ◽  
Cabir Temirci ◽  
Abdullah Özkartal ◽  
Kadir Ejderha ◽  
Nezir Yildirim

AbstractCopper(II) oxide (CuO) in powder form was evaporated thermally on the front surface of an n-Si (1 0 0) single crystal using a vacuum coating unit. Structural investigation of the deposited CuO film was made using X-ray difraction (XRD) and energy dispersive X-ray analysis (EDX) techniques. It was determined from the obtained results that the copper oxide films exhibited single-phase CuO properties in a monoclinic crystal structure. Transmittance measurement of the CuO film was performed by a UV-Vis spectrophotometer. Band gap energy of the film was determined as 1.74 eV under indirect band gap assumption. Current-voltage (I-V) measurements of the CuO/n-Si heterojunctions were performed under illumination and in the dark to reveal the photovoltaic and electrical properties of the produced samples. From the I-V measurements, it was revealed that the CuO/n-Si heterojunctions produced by thermal evaporation exibit excellent rectifying properties in dark and photovoltaic properties under illumination. Conversion efficiencies of the CuO/n-Si solar cells are comparable to those of CuO/n-Si produced by other methods described in the literature.


2016 ◽  
Vol 64 (2) ◽  
pp. 157-161
Author(s):  
M Alauddin ◽  
MM Islam ◽  
MA Aziz

The structural, spectroscopic (IR, NMR and UV-Vis), electronic and optical properties of monohydrated adenine (monohydrated 6-aminopurine, C5H5N5.H2O) are investigated theoretically using DFT/B3LYP level of theory. Three minimum energy structures have been identified for monohydrated of adenine where H2O molecule is doubly hydrogen bonded with adenine.1H NMR analysis shows that the protons which are hydrogen bonded become deshielded and chemical shift moves to the higher frequency region.Five IR active mode of vibrations were found at 3108, 3295, 3665, 3676 and 3719 cm-1 which are assigned as bonded -OH vibration of H2O, Bonded -NH vibration of NH2, Free -NH vibration of adenine (9 N), Free -NH vibration of NH2, Free -OH vibration of H2O, respectively and agree well with the available experimental results. The investigation of electronic properties shows that the HOMO-LUMO band gap energy of monohydrated adenine at B3LYP level is 5.15 eV. The major electronic transition (from HOMO to LUMO (83%) (π→π*)) occurs at 258 nm (4.80 eV) with a minor transition at 237 nm (5.23 eV). Theoretically it is observed that the HOMO-LUMO band gap energy is for monohydrated adenine is lower than that of adenine. Dhaka Univ. J. Sci. 64(2): 157-161, 2016 (July)


2019 ◽  
Vol 9 (22) ◽  
pp. 4775 ◽  
Author(s):  
Osama Saber ◽  
Nagih M. Shaalan ◽  
Aya Osama ◽  
Adil Alshoaibi

The plate-like structure is the most familiar morphology for conventional layered double hydroxides (LDHs) in case their structures consist of divalent and trivalent cations in their layers. In this study, nanofibers and nanoneedles of Co–Si LDHs were prepared for the first time. By the inclusion of zirconium inside the nanolayers of LDH structures, their plates were formed and transformed to nanofibers. These nanofibers were modified by the insertion of titanium to build again plate-like morphology for the LDH structure. This morphology controlling was studied and explained by a dual anions intercalation process. The optical properties of Co–Si LDHs indicated that the incorporation of zirconium within their nanolayers decreased the band gap energy from 4.4 eV to 2.9 eV. Following the same behavior, the insertion of titanium besides zirconium within the nanolayers of Co–Si LDHs caused a further reduction in the band gap energy, which became 2.85 eV. Although there is no data for the optical properties of Co–Si LDHs in the literature, it is interesting to observe the low band gap energy for Co–Si LDHs to become more suitable for optical applications. These results concluded that the reduction of the band gap energy and the formation of nanofibers introduce new optical materials for developing and designing optical nanodevices.


2020 ◽  
Vol 55 (1) ◽  
pp. 71-76
Author(s):  
Gülşen Akın Evingür ◽  
Nafia Alara Sağlam ◽  
Büşra Çimen ◽  
Bengü Özuğur Uysal ◽  
Önder Pekcan

New generation nano-filler polymer composites have many applications including biomedical, electronic and maritime related applications because of their mechanical, electronic and optical properties. The properties of composites were investigated as a function of nano-filler content. Among these, tungsten disulfide (WS2) has the potential to be used as a component in electronic devices owing to its high electron mobility and easily tunable optical band gap energy. Tungsten disulfide (WS2)- Polyacrylamide (PAAm) composite was prepared using free radical co-polymerization and wet laboratory methods with WS2 content. Composites were characterized for mechanical and optical properties using an Elasticity Instrument and UV-vis Spectrophotometer, respectively. Elastic modulus was modeled by a statistical thermodynamics model. Tauc’s and Urbach’s Tail model for direct transition were used to model for the optical band gap. In this study, the swelling and WS2 effect on the optical band gap and elasticity of WS2 - PAAm composites were investigated. It was observed that the elasticity presented a reversed behavior of optical band gap energies with respect to WS2 content. For the applications of nano-filler doped polymer composites in flexible electronic devices, WS2 content strongly influences the mechanical and optical properties.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Hamid M. Ghaithan ◽  
Zeyad A. Alahmed ◽  
Andreas Lyras ◽  
Saif M. H. Qaid ◽  
Abdullah S. Aldwayyan

The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW) approach was used to unfold the band structure. By substituting iodide with bromide, an increase in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials, respectively, was observed, whereas the optical property parameters, which were also investigated, demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by partly replacing iodide with bromide.


Sign in / Sign up

Export Citation Format

Share Document