scholarly journals Effect of Shear Flow on Nanoparticles Migration near Liquid Interfaces

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1143
Author(s):  
Ali Daher ◽  
Amine Ammar ◽  
Abbas Hijazi ◽  
Lazhar Benyahia

The effect of shear flow on spherical nanoparticles (NPs) migration near a liquid–liquid interface is studied by numerical simulation. We have implemented a compact model through which we use the diffuse interface method for modeling the two fluids and the molecular dynamics method for the simulation of the motion of NPs. Two different cases regarding the state of the two fluids when introducing the NPs are investigated. First, we introduce the NPs randomly into the medium of the two immiscible liquids that are already separated, and the interface is formed between them. For this case, it is shown that before applying any shear flow, 30% of NPs are driven to the interface under the effect of the drag force resulting from the composition gradient between the two fluids at the interface. However, this percentage is increased to reach 66% under the effect of shear defined by a Péclet number Pe = 0.316. In this study, different shear rates are investigated in addition to different shearing times, and we show that both factors have a crucial effect regarding the migration of the NPs toward the interfacial region. In particular, a small shear rate applied for a long time will have approximately the same effect as a greater shear rate applied for a shorter time. In the second studied case, we introduce the NPs into the mixture of two fluids that are already mixed and before phase separation so that the NPs are introduced into the homogenous medium of the two fluids. For this case, we show that in the absence of shear, almost all NPs migrate to the interface during phase separation, whereas shearing has a negative result, mainly because it affects the phase separation.

Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Houssine Benabdelhalim ◽  
David Brutin

AbstractBlood pools can spread on several types of substrates depending on the surrounding environment and conditions. Understanding the influence of these parameters on the spreading of blood pools can provide crime scene investigators with useful information. The focus of the present study is on phase separation, that is, when the serum spreads outside the main blood pool. For this purpose, blood pools with constant initial masses on wooden floors that were either varnished or not were created at ambient temperatures of $$21~^{\circ }\hbox {C}$$ 21 ∘ C , $$29~^{\circ }\hbox {C}$$ 29 ∘ C , and $$37~^{\circ }\hbox {C}$$ 37 ∘ C with a relative humidity varying from 20 to 90%. The range $$21~^{\circ }\hbox {C}$$ 21 ∘ C to $$37~^{\circ }\hbox {C}$$ 37 ∘ C covers almost all worldwide indoor cases. The same whole blood from the same donor was used for all experiments. As a result, an increase in relative humidity was found to result in an increase in the final pool area. In addition, at the three different experimental temperatures, the serum spread outside the main pool at relative humidity levels above 50%. This phase separation is more significant on varnished substrates, and does not lead to any changes in the drying morphology. This phenomenon is explained by the competition between coagulation and evaporation.


2015 ◽  
Vol 782 ◽  
pp. 260-299 ◽  
Author(s):  
Preyas N. Shah ◽  
Eric S. G. Shaqfeh

Surfaces that include heterogeneous mass transfer at the microscale are ubiquitous in nature and engineering. Many such media are modelled via an effective surface reaction rate or mass transfer coefficient employing the conventional ansatz of kinetically limited transport at the microscale. However, this assumption is not always valid, particularly when there is strong flow. We are interested in modelling reactive and/or porous surfaces that occur in systems where the effective Damköhler number at the microscale can be $O(1)$ and the local Péclet number may be large. In order to expand the range of the effective mass transfer surface coefficient, we study transport from a uniform bath of species in an unbounded shear flow over a flat surface. This surface has a heterogeneous distribution of first-order surface-reactive circular patches (or pores). To understand the physics at the length scale of the patch size, we first analyse the flux to a single reactive patch. We use both analytic and boundary element simulations for this purpose. The shear flow induces a 3-D concentration wake structure downstream of the patch. When two patches are aligned in the shear direction, the wakes interact to reduce the per patch flux compared with the single-patch case. Having determined the length scale of the interaction between two patches, we study the transport to a periodic and disordered distribution of patches again using analytic and boundary integral techniques. We obtain, up to non-dilute patch area fraction, an effective boundary condition for the transport to the patches that depends on the local mass transfer coefficient (or reaction rate) and shear rate. We demonstrate that this boundary condition replaces the details of the heterogeneous surfaces at a wall-normal effective slip distance also determined for non-dilute patch area fractions. The slip distance again depends on the shear rate, and weakly on the reaction rate, and scales with the patch size. These effective boundary conditions can be used directly in large-scale physics simulations as long as the local shear rate, reaction rate and patch area fraction are known.


2011 ◽  
Vol 678 ◽  
pp. 221-247 ◽  
Author(s):  
P. M. VLAHOVSKA ◽  
Y.-N. YOUNG ◽  
G. DANKER ◽  
C. MISBAH

We study the motion and deformation of a liquid capsule enclosed by a surface-incompressible membrane as a model of red blood cell dynamics in shear flow. Considering a slightly ellipsoidal initial shape, an analytical solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, area-incompressibility and resistance to bending. The theory captures the observed transition from tumbling to swinging as the shear rate increases and clarifies the effect of capsule deformability. Near the transition, intermittent behaviour (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the vorticity direction occurs, i.e. if the capsule ‘breathes’. We report the phase diagram of capsule motions as a function of viscosity ratio, non-sphericity and dimensionless shear rate.


Biorheology ◽  
1988 ◽  
Vol 25 (1-2) ◽  
pp. 113-122 ◽  
Author(s):  
T. Murata ◽  
T.W. Secomb

2018 ◽  
Vol 5 (2) ◽  
pp. 41-57 ◽  
Author(s):  
Anjana Mishra ◽  
Bighnaraj Naik ◽  
Suresh Kumar Srichandan

Missing value arises in almost all serious statistical analyses and creates numerous problems in processing data in databases. In real world applications, information may be missing due to instrumental errors, optional fields and non-response to some questions in surveys, data entry errors, etc. Most of the data mining techniques need analysis of complete data without any missing information and this induces researchers to develop efficient methods to handle them. It is one of the most important areas where research is being carried out for a long time in various domains. The objective of this article is to handle missing data, using an evolutionary (genetic) algorithm including some relatively simple methodologies that can often yield reasonable results. The proposed method uses genetic algorithm and multi-layer perceptron (MLP) for accurately predicting missing data with higher accuracy.


2021 ◽  
Vol 201 (3) ◽  
pp. 547-560
Author(s):  
D. N. Yuriev ◽  
G. V. Zhukovskaya

Research and commercial trawl catches of humpback shrimp Pandalus hypsinotus from the Tatar Strait (Japan Sea) in 2004–2020 were investigated, with bioanalysis of about 45 thousand specimens. Average timing of group molting, spawning, and eggs laying are determined, terms of gonads and eggs development are estimated. Prespawning and molting of the females occur between January-April, with the peaks in early February and middle February, respectively. All oviparous females have 30–40 days to lay eggs, and molt during 50–55 days; the peak of the eggs laying occurs in late June. The males molt in July-August, afterwards the largest individuals change gender and new intersexes are formed. The males have the second molting in October-December, with the peak in late November. In January, after finish of the males molting, a new annual reproduction cycle starts from the prespawning molting of females. Both vitellogenesis and embryogenesis are observed through the year, though females with developing gonads prevail from August to January (because of a long time span between winter and summer moltings while the egg carrying continued 15 months) but oviparous females — from February to July. The individual reproductive cycle of Pandalus hypsinotus in the Tatar Strait lasts 24 months, with 9 months of vitellogenesis (quick growth of gonads) and 15 months of embryogenesis. During the 2-year reproductive cycle, most of females pass through the following stages: i) gonads development (just after eggs laying) when almost all oviparous females (up to 95 % in May) have green gonads under carapace that corresponds to the stage of development «eggs laid — gonads weakly developed»; ii) summer molting from August when females lose hairs on pleopods and the gonads growth accelerates; iii) respawning in January-March (together with the firstly spawning intersexes, with slight delay of the latter); iv) initial developing of eggs during summer; v) stage of «eyed eggs» from December to March; and vi) eggs laying and molting from late March to late May; then the 2-year reproductive cycle repeats.


2019 ◽  
Vol 2 (2) ◽  
pp. 113-118
Author(s):  
Realize Realize ◽  
Tukino Tukino

Home industry production results are only traditionally managed as promoted by word of mouth, and sometimes rely solely on the number of visitors to the sales place of the product, so the product takes a long time to increase sales volume. Now with capitalize a set of computers or smartphones that have been equipped with the Internet network can be used as a tool or media to publish all activities / promotional activities undertaken by the domestic business actors. In this activity, business activists will be given material about what the website, especially weblog and its benefits, how to make it, and how to use and manage it properly to support and improve the ability in promoting the product. This is not without reason, because almost all citizens who already have a household business is less understand the use of the internet let alone use the Internet media as one of the media to promote household products that they produce. The main target in the implementation of community service activities is to improve the ability of the community in the utilization of the Internet as a powerful medium as a partner of the government in moving the economic factors.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Andreea Milasan ◽  
Nicolas Tessandier ◽  
Sisareuth Tan ◽  
Alain Brisson ◽  
Eric Boilard ◽  
...  

Introduction: Although for a long time considered as simple cellular debris, extracellular vesicles (EVs) are now known to be involved in many pathophysiological processes such as thrombosis, autoimmune diseases and inflammation. Due to their diversity and presence in different tissues, EVs are considered important biomarkers and thus, their precise detection in various biological fluids is important to better understand all their different functional activities. The lymphatic system works in close collaboration with the cardiovascular system to preserve fluid balance throughout the body. Lymphatic vessels are present in almost all vascularized tissues, including the brain and the artery wall, and their role in these organ-related pathologies are under intense investigations. Hypothesis: Since lymphatic vessels are often perceived as "sewers", due to their role in removing interstitial fluid and waste products from peripheral tissues such as the artery wall, we herein want to qualitatively and quantitatively assess the presence of EVs in circulating lymph. Methods and Results: Using several approaches such as a Zetasizer Nano S, electron microscopy and flow cytometry analysis, we have detected and characterized EVs in lymph of healthy animals, and found that these EVs are inclusively derived from red blood cells, platelets and lymphatic endothelial cells. Analysis of lymph from atherosclerotic mice (Ldlr -/- ) confirmed the idea that EVs number and origin varies according to the pathological setting. Conclusion: Herein, we show for the first time that EVs are present in lymph and that their level and origin vary in atherosclerosis. Our work will be setting the stage to a better understanding of the mechanism underlying EV accumulation in peripheral tissues during inflammation, and to better control related diseases.


Sign in / Sign up

Export Citation Format

Share Document