floral colour
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ambreena Din ◽  
Zahoor Ahmed Qadri ◽  
MUNEEB AHMAD WANI ◽  
Z.A. Rather ◽  
Shameen Iqbal ◽  
...  

Abstract In terms of global cut flower production, chrysanthemum (Dendranthemum grandiflorum kitam.) ranks among the top ten. When a plant species possesses colour characteristics associated with those of ancestral species, that colour is described as being white, yellow, or pink, with white coloration representing an absence of pigments, and yellow and pink coloration each represents the presence of carotenoids and anthocyanins, respectively. Pigments, or a combination of pigments, have been improved upon to provide an expansive rainbow of floral colours like orange, dark red, purplish-red, and red. Recent green-flowered varieties have developed a reputation for containing chlorophylls in their ray petals. Additionally, transgenic interventions have been used to breed violet/blue flowers. Flower colour is a highly regarded characteristic of any flower cultivar, particularly chrysanthemum. Breeders' ultimate goal is to create newer chrysanthemum cultivars with innovative characteristics, such as new flower colours, using a time and input-efficient approach. Investigating the molecular mechanisms that regulate flower pigmentation may yield critical insights into the rational manipulation of floral colour. To generate a diverse array of flower colour mutants in chrysanthemum cv. “Candid” through mutagenesis, in vitro grown micro shoots were exposed to 10, 20, 30, and 40 Gy gamma irradiation at 100 Gy per minute and were evaluated for different parameters. The rhizogenesis parameters declined with the increase in irradiation dose from 0 Gy to 40 Gy, while as, 10 Gy dose proved to record minimum decline in contrast to the control. Survival, leaf size, and the number of leaves plant-1 after the 8th-week interval exhibited a downward trend with the increasing trend of gamma irradiation dose but recorded a least drop in plants raised from shoots irradiated with 10 Gy gamma irradiation dose with respect to the control. Apparently, the minimum delay in the number of days to floral bud appearance took under 10 Gy compared to control. The highest number of flower colour mutants was recorded under 10 Gy (light pink, orange-pink, white and yellow). Demountable mutation frequency based on flower colour was desirable in plants irradiated with the slightest dose of 10 Gy.


2021 ◽  
Vol 28 ◽  
pp. 108-126
Author(s):  
Sakkia Wilmsen ◽  
Adrian G Dyer ◽  
Klaus Lunau

Colour signals of flowers facilitate detection, spontaneous preference, discrimination and flower constancy by important bee pollinators. At short distances bees orient to floral colour patterns to find a landing platform and collect nutrition, potentially improving the plants’ reproductive success when multiple flowers are visited sequentially. In addition to pigments and backscattering structures within the petals’ internal layers, the epidermal micro-structure of the petals’ surface may also influence petal reflectance properties and thus influence overall colour patterns via optical effects. Gloss, i.e., shine caused by specular reflections of incident light from smooth surfaces, may for example alter the visual appearance of surfaces including flowers. We classify the epidermal surface properties of petals from 39 species of flowering plants from 19 families by means of a cell shape index, and measure the respective surface spectral reflectance from different angles. The spontaneous behavioural preferences of free flying bumblebees (Bombus terrestris) for surfaces with different micro-textures was then tested using specially prepared casts of selected flower petals. We specifically tested how the petal colour as function of the angle of incident light, surface structure and bee approach angle influences bumblebees’ spontaneous choices for artificial flowers. We observe that bumblebees spontaneously prefer artificial flowers with conical-papillate micro-structures under both multidirectional illumination and under spotlight conditions if approaching against the direction of spotlight, suggesting conical cells help promote constant signals by removing gloss that may confound the integrity of colour signalling. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Rubén Torices ◽  
Lucía DeSoto ◽  
Eduardo Narbona ◽  
José María Gómez ◽  
John Richard Pannell

The reproductive success of plants depends both on their phenotype and the local neighbourhood in which they grow. Animal-pollinated plants may benefit from increased visitation when surrounded by attractive conspecific individuals, via a “magnet effect.” Group attractiveness is thus potentially a public good that can be exploited by individuals, with selfish exploitation predicted to depend on genetic relatedness within the group. Petal colour is a potentially costly trait involved in floral signalling and advertising to pollinators. Here, we assessed whether petal colour was plastically sensitive to the relatedness of neighbours in the annual herb Moricandia moricandioides, which produces purple petals through anthocyanin pigment accumulation. We also tested whether petal colour intensity was related to nectar volume and sugar content in a context-dependent manner. Although both petal colour and petal anthocyanin concentration did not significantly vary with the neighbourhood configuration, plants growing with kin made a significantly higher investment in petal anthocyanin pigments as a result of the greater number and larger size of their flowers. Moreover the genetic relatedness of neighbours significantly modified the relationship between floral signalling and reward quantity: while focal plants growing with non-kin showed a positive relationship between petal colour and nectar production, plants growing with kin showed a positive relationship between number of flowers and nectar volume, and sugar content. The observed plastic response to group relatedness might have important effects on pollinator behaviour and visitation, with direct and indirect effects on plant reproductive success and mating patterns, at least in those plant species with patchy and genetically structured populations.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202693
Author(s):  
Cierra N. Sullivan ◽  
Matthew H. Koski

Pigmentation affords resistance to abiotic stressors, and thus can respond adaptively or plastically to drought and extreme temperatures associated with global change. Plants frequently display variability in flower coloration that is underlain by anthocyanin pigmentation. While anthocyanin polymorphisms impact plant–animal interactions, they also impact reproductive performance under abiotic stress. We used descriptions of flower colour from over 1900 herbarium records representing 12 North American species spanning 124 years to test whether anthocyanin-based flower colour has responded to global change. Based on demonstrated abiotic associations with performance of anthocyanin colour morphs, we predicted pigmentation would increase in species experiencing increased aridity, but decline in those experiencing larger increases in temperature. We found that the frequency of reports of pigmented morphs increased temporally in some taxa but displayed subtle declines in others. Pigmentation was negatively associated with temperature and positively associated with vapour pressure deficit (a metric of aridity) across taxa. Species experiencing larger temperature increases over time displayed reductions in pigmentation, while those experiencing increases in aridity displayed increases in pigmentation. Change in anthocyanin-based floral colour was thus linked with climatic change. Altered flower coloration has the strong potential to impact plant–animal interactions and overall plant reproductive performance.


2021 ◽  
Author(s):  
Jan E.J. Mertens ◽  
Lucas Brisson ◽  
Štěpán Janeček ◽  
Yannick Klomberg ◽  
Vincent Maicher ◽  
...  

AbstractButterflies and moths are well-visible flower visitors. Nevertheless, almost no quantification of their role in plant-pollinator interactions exists at a community level, especially from tropical rainforests. Moreover, we have virtually no knowledge on environmental and other factors affecting lepidopteran flower visits.We focused on the role of butterflies and hawkmoths as flower visitors in tropical rainforests of Mount Cameroon, especially on its elevational and seasonal changes. We also analysed their preferences to selected floral traits, with a specific focus on pollination syndromes.We video-recorded flower visitors of 1,115 specimens of 212 plant species (>26,000 recording hrs) along the complete elevational gradient of rainforests in two main seasons, and compared frequencies of flower-visiting lepidopterans to other visitors. We compared characteristics of plant-lepidopteran networks among elevations and seasons, and analysed patterns of selected lepidopteran traits. Finally, we analysed inter-family differences in their floral preferences.Altogether, we recorded 734 flower visits by 80 butterflies and 27 hawkmoth species, representing only ~4% of all 18,439 flower visits. Although lepidopterans visited only a third species, they appeared key visitors of several plants. The most flower visits by lepidopterans were recorded in mid-elevations and dry season, mirroring the general patterns of lepidopteran diversity. The networks showed no apparent elevational or seasonal patterns, probably because of the surprisingly high specialisation of interactions in all networks. Significant non-linear changes of proboscis and forewing lengths were found along elevation, and long-proboscid hesperiid butterflies visited flowers with longer tubes or spurs. Substantial differences in floral preferences were found between sphingids, and papilionid, nymphalid and lycaenid butterflies, revealing importance of nectar production, floral size and shape for sphingids, and floral colour for butterflies.Butterflies and hawkmoths were confirmed as relatively minor visitors of tropical forest flowers, although they seemed crucial for pollination of some plant species. Moreover, the revealed floral preferences and trait-matchings confirmed a potential of some lepidopteran families to drive floral evolution in tropical ecosystems.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4664
Author(s):  
Fernanda Mendes Rezende ◽  
Mads Hartvig Clausen ◽  
Magdalena Rossi ◽  
Cláudia Maria Furlan

Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.


Plant Biology ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 992-1001 ◽  
Author(s):  
C. G. Witt ◽  
B. Anderson ◽  
I. N. Durbach ◽  
S. D. Johnson

Author(s):  
ThankGod Timipanipiri Wood ◽  
Elijah Ige Ohimain

Intra- and inter-species genetic diversity study was carried out comparing the molecular and morphological characters of five Cola species namely Cola acuminata, Cola nitida, Cola millenii, Cola lepidota and Cola gigantea collected from five locations in Ibadan, Nigeria. Sixteen Cola accessions were analysed based on 7 quantitative characters, 12 qualitative characters and 8 Random Amplified Polymorphic DNA primers. From the quantitative characters studied, high significant difference across the location and species was recorded as leaf length had the strongest variability while the species obtained from Botany Nursery showed strongest locational effect on the vegetative leaf characters. All quantitative characters analysed were good determinants for delimiting Cola species. Cola lepidota recorded the highest variability compared to the other Cola species. Qualitative characters studied revealed that leaf surface, seed colour, and floral colour are strong characters for delimiting Cola species. Molecular analysis showed that 309 fragments were recorded, of which 28.5% were polymorphic while 8.4% were monomorphic. Genetic similarities ranged from 0.44 to 0.93 for the 16 Cola accessions with a mean value of 0.67. Deductions from the combined effect of molecular and morphological characters showed high variability for the characters analysed and a likely monophyletic relationship for the 16 Cola accessions.  Molecular and morphological determinants observed in this study can help Cola breeders identify species of interest. We recommend further research on the variability of Cola species.


2020 ◽  
Vol 130 (3) ◽  
pp. 447-457
Author(s):  
Rong Liu ◽  
Yike Gao ◽  
Zhuping Fan ◽  
Xinzi Wang ◽  
Jianhua Xiao ◽  
...  

Abstract Knowledge of factors driving reproductive isolation is essential to understand the process of speciation. To study the reproductive isolation of two closely related species with overlapping flowering seasons, Iris domestica and Iris dichotoma, we compared their reproductive system, floral biology and pollination biology. The results indicated that I. domestica was facultatively xenogamous, whereas I. dichotoma was facultatively autogamous. Although the two species differed significantly in floral colour, floral diameter, floral structure, nectar volume, flower opening and closing times, they shared the same diurnal pollinator, the honeybee Apis cerana. The frequency of pollination by A. cerana did not differ significantly between the two species, but honeybee pollination of I. domestica was more efficient compared with that of I. dichotoma. Despite the difference in floral structure between the two species, both species deposited pollen on the same parts of the body of honeybees. The temporal partitioning of within-day flowering times between I. domestica (from 07.15 to 08.15 h to 18.00 to 19.00 h) and I. dichotoma (from 15.45 to 16.15 h to 22.00 to 23.00 h), together with the time memory of honeybees, meant that the two species did not overlap in the time of their pollination, thus leading to temporal isolation as a major driver of reproductive isolation between the two species.


Sign in / Sign up

Export Citation Format

Share Document