scholarly journals A NUMERICAL APPROACH TO THE CONTACT OF NOMINALLY FLAT SURFACES

2021 ◽  
Vol 13 (3) ◽  
pp. 22-28
Author(s):  
Delia Cerlinca ◽  
◽  
Sergiu Spinu ◽  
◽  

Machined surfaces can be described by heights and wavelengths of the surface asperities that show a statistical variation. Considering that a regular wavy surface with a sinusoidal profile is the crudest model for a rough surface, studying the contact of regular wavy surfaces is a good approximation for the contact of nominally flat surfaces. Such contact problems exhibit periodicity that can be simulated with the aid of computational techniques derived for contact mechanics in the frequency domain. The displacement calculation, which is a necessary step in the resolution of the contact problem, is mathematically a convolution product that can be calculated in the frequency domain with increased computational efficiency. The displacement induced by a unit surface load can be expressed in the frequency domain by the frequency response functions, which are counterparts of the space domain solutions to half-space fundamental problems such as the Boussinesq problem. The displacement induced by a periodic pressure distribution can be computed by executing the convolution product between the frequency response function and pressure on a single period. It should be noted that the convolution calculation in the spectral domain implies that the contributions of all neighbouring pressure periods are accounted for. The need to treat numerically only a single period results in remarkable computational efficiency, allowing for high density meshes that can capture the essential features of any textured real surface. The displacement calculation promotes the solution of the contact problem by an iterative approach. The advanced method is benchmarked against existing analytical solutions for the 3D contact of surfaces possessing two-dimensional waviness. This essentially deterministic model, supported by a direct numerical solution that can be obtained for samples of real rough surfaces, presents itself as a worthy alternative to the existing statistical models for rough contact interaction.

Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2003 ◽  
Vol 125 (1) ◽  
pp. 25-32 ◽  
Author(s):  
W. Ning ◽  
Y. S. Li ◽  
R. G. Wells

A multistage frequency domain (time-linearized/nonlinear harmonic) Navier-Stokes unsteady flow solver has been developed for predicting unsteady flows induced by bladerow interactions. In this paper, the time-linearized option of the solver has been used to analyze unsteady flows in a subsonic turbine test stage and the DLR transonic counter-rotating shrouded propfan. The numerical accuracy and computational efficiency of the time-linearized viscous methods have been demonstrated by comparing predictions with test data and nonlinear time-marching solutions for these two test cases. It is concluded that the development of efficient frequency domain approaches enables unsteady flow predictions to be used in the design cycles to tackle aeromechanics problems.


Author(s):  
Naserodin Sepehry ◽  
Firooz Bakhtiari-Nejad ◽  
Mahnaz Shamshirsaz ◽  
Weidong Zhu

One of the main objectives of the structural health monitoring by piezoelectric wafer active sensor (PWAS) using electromechanical impedance method is continuously damage detection applications. In present work impedance method of beam structure is considered and the effect of early crack using breathing crack modeling is studied. In order to model the effect of a crack in beam, the beam is connected with a rotational spring in crack location. The Rayleigh–Ritz method is used to generate ordinary differential equation of cracked beam. Firstly, only open crack is considered that this is leads to linear system equation. In linear system, time domain system equations are converted to frequency domain, and then impedance of PWAS in frequency domain is calculated. Secondly, the breathing crack is modeled to be fully open or fully closed. This phenomenon leads to the nonlinear system equations. These nonlinear equations are solved using pseudo-arc length continuation scheme and collocation method for any harmonic voltage applied to actuator. Then impedance of PWAS is calculated. Two methods are used to detect early crack using breathing crack modeling on PWAS impedance. At the first, frequency response of breathing crack in the frequency range with its sub-harmonics is calculated. Second, only frequency response of one harmonic is computed with its super-harmonics. Finally, the detection method of linear is compared with nonlinear model.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ilwook Park ◽  
Usik Lee ◽  
Donghyun Park

It has been well known that exact closed-form solutions are not available for non-Levy-type plates. Thus, more accurate and efficient computational methods have been required for the plates subjected to arbitrary boundary conditions. This paper presents a frequency-domain spectral element model for the rectangular finite plate element. The spectral element model is developed by using two methods in combination: (1) the boundary splitting and (2) the super spectral element method in which the Kantorovich method-based finite strip element method and the frequency-domain waveguide method are utilized. The present spectral element model has nodes on four edges of the finite plate element, but no nodes inside. This can reduce the total number of degrees of freedom a lot to improve the computational efficiency significantly, when compared with the standard finite element method (FEM). The high solution accuracy and computational efficiency of the present spectral element model are evaluated by the comparison with exact solutions and the solutions by the standard FEM.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Eloi Figueiredo ◽  
Gyuhae Park ◽  
Kevin M. Farinholt ◽  
Charles R. Farrar ◽  
Jung-Ryul Lee

In this paper, time domain data from piezoelectric active-sensing techniques is utilized for structural health monitoring (SHM) applications. Piezoelectric transducers have been increasingly used in SHM because of their proven advantages. Especially, their ability to provide known repeatable inputs for active-sensing approaches to SHM makes the development of SHM signal processing algorithms more efficient and less susceptible to operational and environmental variability. However, to date, most of these techniques have been based on frequency domain analysis, such as impedance-based or high-frequency response functions-based SHM techniques. Even with Lamb wave propagations, most researchers adopt frequency domain or other analysis for damage-sensitive feature extraction. Therefore, this study investigates the use of a time-series predictive model which utilizes the data obtained from piezoelectric active-sensors. In particular, time series autoregressive models with exogenous inputs are implemented in order to extract damage-sensitive features from the measurements made by piezoelectric active-sensors. The test structure considered in this study is a composite plate, where several damage conditions were artificially imposed. The performance of this approach is compared to that of analysis based on frequency response functions and its capability for SHM is demonstrated.


Author(s):  
Silvio Sorrentino ◽  
Luigi Garibaldi

This paper presents a study of the frequency domain behaviour of a single degree of freedom (SDOF) system with a fractional derivative model, named Fractional Kelvin-Voigt. Frequency response functions (FRFs) as receptance and transmissibility are analytically studied. Then the model is applied to describe the dynamic behaviour of a magneto-mechanic system in the frequency domain, consisting of a body of para or dia-magnetic material vibrating in a field created by a pair of magnets.


2004 ◽  
Vol 11 (5-6) ◽  
pp. 685-692 ◽  
Author(s):  
Jiehua Peng ◽  
Jiashi Tang ◽  
Zili Chen

A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.


2010 ◽  
Vol 67 (10) ◽  
pp. 3238-3252 ◽  
Author(s):  
Hua Zhang ◽  
Feng Zhang ◽  
Qiang Fu ◽  
Zhongping Shen ◽  
Peng Lu

Abstract The δ-two- and four-stream combination approximations, which use a source function from the two-stream approximations and evaluate intensities in the four-stream directions, are formulated for the calculation of diffuse actinic fluxes. The accuracy and efficiency of the three computational techniques—the δ-two-stream approximations, the δ-two- and four-stream combination approximations based on various two-stream approaches, and the δ-four-stream approximation—have been investigated. The diffuse actinic fluxes are examined by considering molecular, aerosol, haze, and cloud scattering over a wide range of solar zenith angles, optical depths, and surface albedos. In view of the overall accuracy and computational efficiency, the δ-two- and four-stream combination method based on the quadrature scheme appears to be well suited to radiative transfer calculations involving photodissociation processes.


Sign in / Sign up

Export Citation Format

Share Document