scholarly journals Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column

2021 ◽  
Vol 11 (22) ◽  
pp. 10810
Author(s):  
Hui Luo ◽  
Baojie He ◽  
Wenhao Zhang ◽  
Zhaoqian Jing

Porous asphalt pavement (PAP) system is a widely used treatment measure in sustainable stormwater management and groundwater recharge, but their variable performance in nitrogen (N) and phosphorus (P) removal requires further reinforcement prior to widespread uptake. Two laboratory-scale PAP systems were developed by comparing limestone bedding and zeolite incorporated into modified zeolite powder porous microsphere (MZP-PM) as a filter column under a typical rainfall. The PAP system of zeolite bedding incorporated into MZP-PM (a weight less than 5% of zeolite) removed 74.5% to 90.6% of ammonium (NH4+-N) and 72.9% to 92.4% of total phosphate (TP) from the influent, as compared with 25.7% to 62.7% of NH4+-N and 32.6% to 56.4% of TP by that of the limestone as bed material. This improvement was presumably due to MZP-PM’s high adsorption capacity and surface complexation. The formation of ≡(La)(OH)PO2 was verified to be the dominant pathway for selective phosphate adsorption by MZP-PM and ion-exchange was proved to be the main removal process for ammonium. This study provides promising results for improving N and P removal by modifying a porous asphalt pavement system to include an MZP-PM adsorbent column as a post-treatment.

2020 ◽  
Vol 81 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Hui Luo ◽  
Lin Guan ◽  
Zhaoqian Jing ◽  
Zeyu Zhang ◽  
Xiaobo Hu ◽  
...  

Abstract This study was aimed to investigate the removal processes of nitrogen (TN), NH4+-N and phosphorus (TP) from surface runoff by performing experiments on the filter layers in porous asphalt pavement (PAP). Experiments were conducted to compare the differences of the filter layer placed at the top, the middle or the bottom of PAP. The effects of retention time on the removal of the pollutants and the adsorption capacity of PAP materials were also investigated. Results indicated that the filter layer placed under the bed course improved the removal rates of pollutants compared to the other two cases on the whole. The concentration of TP in the effluent decreased by 80% after the 48 h retention time. In conclusion, this study demonstrated that the positions of filter layers and the temporary retention time of surface runoff within the bed course of PAP were critical parameters for determining the removal processes of pollutants. Thus, a certain retention time for surface runoff in bed course is of great importance for PAP to serve as an effective low impact development technology for stormwater management.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 397-402
Author(s):  
Yasuhiko Wada ◽  
Hiroyuki Miura ◽  
Rituo Tada ◽  
Yasuo Kodaka

We examined the possibility of improved runoff control in a porous asphalt pavement by installing beneath it an infiltration pipe with a numerical simulation model that can simulate rainfall infiltration and runoff at the porous asphalt pavement. From the results of simulations about runoff and infiltration at the porous asphalt pavement, it became clear that putting a pipe under the porous asphalt pavement had considerable effect, especially during the latter part of the rainfall.


Author(s):  
Mohammad Nadeem Akhtar ◽  
Mohammed Jameel ◽  
Abdullah M. Al-Shamrani ◽  
Nadeem A. Khan ◽  
Zainah Ibrahim ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 1725-1732 ◽  
Author(s):  
Guo Qi Tang ◽  
Dong Wei Cao ◽  
Ke Zhong ◽  
Xiao Qiang Yang

The interlayer bonding of double-layer porous asphalt pavement will show more variations with different construction technologies, such as one-step molding by double-layer (hot on hot) paver, or paving layer by layer (hot on cold) with or without tack coat, and the variations will definitely have influences on pavement structure. Different interlayer technologies are studied in this paper on three levels including simulation experiments on specimen by indoor preparation, calculation of pavement mechanics, and construction of testing road, so that optimal interlayer bonding technology for double-layer porous asphalt pavement is discussed in combination with its effect on permeability.


2020 ◽  
pp. 365-369
Author(s):  
Muhammad Waheed Abid ◽  
Ali Raza Khan ◽  
Bin Yu*

2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 207-214 ◽  
Author(s):  
J.J. Lee ◽  
C.U. Choi ◽  
M.J. Lee ◽  
I.H. Chung ◽  
D.S. Kim

This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700μm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.


2012 ◽  
Vol 178-181 ◽  
pp. 1333-1337 ◽  
Author(s):  
Ching Tsung Hung ◽  
Shih Huang Chen ◽  
Chia Chen Wu

Taiwan position is in the subtropics, the climate is high temperature and much rains of year. Freeway mostly uses traditional dense grade in pavement construction, so the pavement could not remove water quickly in rainy day. It will deteriorate by rutting and aging, due to increasing maintenance frequency and cost. Porous asphalt pavement has high performance on road user safe and amenity in many countries. But the prescription in porous asphalt is Variable, for example, the fiber has miner and wood. Base on multiple conditions, the best performance can choice by multiple criteria decision method. This methodology needs the criteria under independent, but the real world is not. The study use Decision-Making Trial and Evaluation Laboratory method to establish the relationship in criteria. With result, the drainage capacity was the important factor in porous asphalt pavement.


1991 ◽  
Vol 24 (10) ◽  
pp. 231-237
Author(s):  
W. G. Werumeus Buning ◽  
F. W. A. M. Rijnart ◽  
P. P. Weesendorp

To meet two levels of nitrogen and phosphorus removal (effluent standards Ntot 20 and 10 mg/l and Ptot 2 and 1 mg/l respectively) various systems were compared in a desk study. After a cost estimate and an assessment f the advantages and drawbacks, the oxidation ditch with biological by pass phosphate removal turned out to be the best system.


Sign in / Sign up

Export Citation Format

Share Document