sustainable stormwater management
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 11 (22) ◽  
pp. 10810
Author(s):  
Hui Luo ◽  
Baojie He ◽  
Wenhao Zhang ◽  
Zhaoqian Jing

Porous asphalt pavement (PAP) system is a widely used treatment measure in sustainable stormwater management and groundwater recharge, but their variable performance in nitrogen (N) and phosphorus (P) removal requires further reinforcement prior to widespread uptake. Two laboratory-scale PAP systems were developed by comparing limestone bedding and zeolite incorporated into modified zeolite powder porous microsphere (MZP-PM) as a filter column under a typical rainfall. The PAP system of zeolite bedding incorporated into MZP-PM (a weight less than 5% of zeolite) removed 74.5% to 90.6% of ammonium (NH4+-N) and 72.9% to 92.4% of total phosphate (TP) from the influent, as compared with 25.7% to 62.7% of NH4+-N and 32.6% to 56.4% of TP by that of the limestone as bed material. This improvement was presumably due to MZP-PM’s high adsorption capacity and surface complexation. The formation of ≡(La)(OH)PO2 was verified to be the dominant pathway for selective phosphate adsorption by MZP-PM and ion-exchange was proved to be the main removal process for ammonium. This study provides promising results for improving N and P removal by modifying a porous asphalt pavement system to include an MZP-PM adsorbent column as a post-treatment.


2021 ◽  
Vol 13 (19) ◽  
pp. 11041
Author(s):  
Kinga Kimic ◽  
Karina Ostrysz

Blue and Green Infrastructure (BGI) provide one of the key Nature Based Solution (NBS) approaches for sustainable stormwater management in cities, in conjunction with extending the scope of Ecosystem Services (ES). In both the process of planning and designing highly urbanized areas, the implementation of BGI is important for the improvement of living conditions and counteracting the negative effects of climate change. Based on the literature review, 19 BGI solutions were identified and then valorized in relation to the following three key aspects: spatial and functional, environmental, and social. The results of the assessment were derived using the scoring method and allowed for the identification of BGI solutions with a high, medium or low value for shaping sustainable urban public spaces. Using the potential of analyzed BGI solutions to improve the functioning and attractiveness of urban areas requires a comprehensive approach. Conscious planning and designing should use the knowledge presented to make the implementation of BGI solutions as effective as possible in relation to the above-mentioned aspects of shaping urban public spaces.


Author(s):  
Saurabh Ravikiran Dake

Over the past years, rapid growth due to urbanization and industrialization, the changes in Land over and land use patterns have resulted in permanent environmental pollution to the hydrological processes. The hydrological cycle in cities is seriously affected due to increasing impervious areas as a result of urban development which has enhanced the risk of urban flooding. The increase in the impermeable area decreases infiltration, increases the runoff and reduces the time of concentration. Hence, for a given amount of rainfall, greater flooding is generated. Understanding the scope and limitation of sustainable stormwater management techniques detailed literature review is carried out. Site suitability is based on spatial analysis of data like geomorphology, slope, recharge condition, landuse and Landover map. Then analyzing local site conditions possible techniques that could be used to manage stormwater runoff are recommended and conclusions are drawn on the same.


2020 ◽  
Vol 12 (23) ◽  
pp. 10189
Author(s):  
Joanna Boguniewicz-Zabłocka ◽  
Andrea G. Capodaglio

Sustainable stormwater management approaches in accordance with the EU Water Framework Directive (WFD) allow a source control to handle the quality and quantity of the runoff at local level or near the source. The most popular technologies applied in Europe are green roofs, porous pavements, retention basins and bioswales/raingardens. In this article, two of these solutions (retention tank with reuse, and rain garden, respectively), applied to single dwelling case studies in a suburban area in the Silesia Region (Poland), are illustrated and analyzed. The selected cases consider technical and economic aspects as the most important factors for decision on the selection of onsite stormwater management approach. Both systems have been operational for approximately two years. The retention tank proved a good solution, reducing stormwater overflows and allowing local water reuse for lawn irrigation; however, investment and maintenance costs in this case are relatively higher. The raingarden proved to work efficiently in this small scale implementation and implied much lower initial investment and costs. The economic sustainability of these interventions at single dwelling scale was analyzed, showing interesting returns, with outcome depending on the degree of possible water reuse (lower water bills) and availability of fiscal or fee incentives. Introduction of financial incentive schemes will encourage homeowners and developers to implement stormwater control solutions, allowing rapid amortization of investment costs with additional benefits to the community, such as reduced environmental impact of stormwater overflows and possible economies in the construction and management of stormwater systems.


Author(s):  
J. Jia ◽  
S. Zlatanova ◽  
S. Hawken ◽  
K. F. Zhang

Abstract. Rapid urbanization has resulted in high-density construction, more impervious area and with increasing threats of urban stormwater, drought and negative influences on human wellbeing. Although there has been progress in sustainable stormwater management and the promotion of human wellbeing with green space, the research has been conducted from a mono-disciplinary perspective and has brought potential conflicts in the utilisation of green space in an urban area. Since smart city proposed, researchers are exploring informational and integrated urban management to face this type of development conflicts and achieve a harmonious and sustainable future. This research proposes a parametric spatial model to integrate stormwater management and human recreation needs based on the understanding of the relationship between them on the same urban green space. We expect that this integrated parametric spatial model will help residents to interact with functional green space and provide options to organize the urban green space smarter and more effectively. This paper presents: (1) A review of the main sustainable stormwater management measures with principles, models and facilities to reveal an overlooked but important relationship between space and stormwater management. (2) Investigation of the research on the benefits of green space on human wellbeing. The study argues that the participation of green space cannot be effectively and accurately analysed with the current main analysis measures which relying on satellite-based vegetation indices or land-use database. This research is intended to set smarter decision making on urban green spaces which connects sustainable stormwater management with human wellbeing via visualised parametric spatial model.


Sign in / Sign up

Export Citation Format

Share Document