Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states

2021 ◽  
Author(s):  
Gong Xiao-long ◽  
Cao Shuo ◽  
Yue Fang ◽  
Liu Tong-Hua

Abstract Realistic quantum systems always exhibit gravitational and relativistic features. In this paper, we investigate the properties of Gaussian steering and its asymmetry by the localized two-mode Gaussian quantum states, instead of the traditional single-mode approximation method in the relativistic setting. We find that the one-side Gaussian quantum steering will monotonically decrease with increasing observers of acceleration. Meanwhile, our results also reveal the interesting behavior of the Gaussian steering asymmetry, which increases for a specific range of accelerated parameter and then gradually approaches to a finite value. Such findings is well consistent and explained by the well-known Unruh effect, which could significantly destroy the one-side Gaussian quantum steering. Finally, our results could also be applied to the dynamical studies of Gaussian steering between the Earth and satellites, since the effects of acceleration is equal to the effects of gravity according to the equivalence principle.

1998 ◽  
Vol 12 (11) ◽  
pp. 1135-1146
Author(s):  
Alejandro Cabo ◽  
Aurora Pérez Martínez

We consider the Bethe Salpeter Equation (BSE) for a fractionally filled Landau level. A phenomenological discussion of the 1/3 Laughlin's state is performed by assuming an ansatz for the one-particle propagator. The BSE is solved in this approach and it predicts an instability under the formation of charge density oscillations for a wide range of the one-particle gap parameter values in contrast with previous single mode approximation results. However, the conclusion is compatible with the one obtained within a composite fermion description done by us before and with the saturation of the zero momentum oscillator strength sum rule by the cyclotronic resonance. Further studies should be done in order to understand the discrepancy.


2010 ◽  
Vol 82 (4) ◽  
Author(s):  
David E. Bruschi ◽  
Jorma Louko ◽  
Eduardo Martín-Martínez ◽  
Andrzej Dragan ◽  
Ivette Fuentes

Author(s):  
T. M. Cameron ◽  
J. H. Griffin

A method is developed that can be used to calculate the stationary response of randomly excited nonlinear systems. The method iterates to obtain the fast Fourier transform of the system response, returning to the time domain at each iteration to take advantage of the ease in evaluating nonlinearities there. The updated estimates of the nonlinear terms are transformed back into the frequency domain in order to continue iterating on the frequency spectrum of the staionary response. This approach is used to calculate the response of a one degree of freedom system with friction damping that is subjected to random excitation. The one degree of freedom system provides a single mode approximation of systems (e.g. turbine blades) with friction damping. This study investigates various strategies that can be used to optimize the friction load so as to minimize the response of the system.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


Author(s):  
Charles Dickens ◽  
Dennis Walder

Dombey and Son ... Those three words conveyed the one idea of Mr. Dombey's life. The earth was made for Dombey and Son to trade in, and the sun and moon were made to give them light.' The hopes of Mr Dombey for the future of his shipping firm are centred on his delicate son Paul, and Florence, his devoted daughter, is unloved and neglected. When the firm faces ruin, and Dombey's second marriage ends in disaster, only Florence has the strength and humanity to save her father from desolate solitude. This new edition contains Dickens's prefaces, his working plans, and all the original illustrations by ‘Phiz’. The text is that of the definitive Clarendon edition. It has been supplemented by a wide-ranging Introduction, highlighting Dickens's engagement with his times, and the touching exploration of family relationships which give the novel added depth and relevance.


2021 ◽  
pp. 053901842199894
Author(s):  
Frank Adloff ◽  
Iris Hilbrich

Possible trajectories of sustainability are based on different concepts of nature. The article starts out from three trajectories of sustainability (modernization, transformation and control) and reconstructs one characteristic practice for each path with its specific conceptions of nature. The notion that nature provides human societies with relevant ecosystem services is typical of the path of modernization. Nature is reified and monetarized here, with regard to its utility for human societies. Practices of transformation, in contrast, emphasize the intrinsic ethical value of nature. This becomes particularly apparent in discourses on the rights of nature, whose starting point can be found in Latin American indigenous discourses, among others. Control practices such as geoengineering are based on earth-systemic conceptions of nature, in which no distinction is made between natural and social systems. The aim is to control the earth system as a whole in order for human societies to remain viable. Practices of sustainability thus show different ontological understandings of nature (dualistic or monistic) on the one hand and (implicit) ethics and sacralizations (anthropocentric or biocentric) on the other. The three reconstructed natures/cultures have different ontological and ethical affinities and conflict with each other. They are linked to very different knowledge cultures and life-worlds, which answer very differently to the question of what is of value in a society and in nature and how these values ought to be protected.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


1993 ◽  
Vol 6 (1) ◽  
pp. 61-80 ◽  
Author(s):  
John D'Arcy May

Do human rights in their conventional, Western understanding really meet the needs of Pacific peoples? This article argues that land rights are a better clue to those needs. In Aboriginal Australia, Fiji, West Papua and Papua New Guinea, case studies show that people's relationship to land is religious and implicitly theological. The article therefore suggests that rights to land need to be supplemented by rights of the land extending to the earth as the home of the one human community and nature as the matrix of all life.


Sign in / Sign up

Export Citation Format

Share Document