scholarly journals Study on Hydrocarbon Accumulation Periods Based on Fluid Inclusions and Diagenetic Sequence of the Subsalt Carbonate Reservoirs in the Amu Darya Right Bank Block

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Yunpeng Shan ◽  
Hongjun Wang ◽  
Liangjie Zhang ◽  
Penghui Su ◽  
Muwei Cheng ◽  
...  

In order to provide paleofluid evidence of hydrocarbon accumulation periods in the Amu Darya Right Bank Block, microexperiments and simulations related to the Middle-Upper Jurassic Callovian-Oxfordian carbonate reservoirs were performed. On the basis of petrographic observation, the diagenetic stages were divided by cathodoluminescence, and the entrapment stages of fluid inclusions were divided by laser Raman experiment and UV epifluorescence. The hydrocarbon generation (expulsion) curve and burial (thermal) history curve of source rocks were simulated by using real drilling data coupled with geochemical parameters of source rocks, such as total organic carbon (TOC) and vitrinite reflectance ( R o ). The above results were integrated with microthermometry of fluid inclusions by inference the timing of hydrocarbon migration into the carbonate reservoirs. The horizon-flattening technique was used to process the measured seismic profile and restore the structural evolution profile. Four diagenetic periods and three hydrocarbon accumulation periods were identified. (i) For Syntaxial stage, the fluid captured by the overgrowing cement around particles is mainly seawater; (ii) for (Early) Mesogenetic burial stage, the calcite cements began to capture hydrocarbon fluids and show yellow fluorescence under UV illumination; (iii) for (Late) Mesogenetic burial stage, two sets of cleavage fissures developed in massive calcite cements, and oil inclusions with green fluorescence were entrapped in the crystal; (iv) for Telogenetic burial stage, blue fluorescent inclusions along with hydrocarbon gas inclusions developed in dully luminescent calcite veins. Based on the accurate division of hydrocarbon migration and charging stages, combined with the structural evolution history of the traps, the hydrocarbon accumulation model was established. Because two of the three sets of source rocks are of marine origin, resulting in the lack of vitrinite in the kerogen of those source rocks, there may be some deviation between the measured value of R o and the real value. Some systematic errors may occur in the thermal history and hydrocarbon generation (expulsion) history of the two sets of source rocks. Due to the limitations of seismic horizon-flattening technique—such as the inability to accurately recover the inclined strata thickness and horizontal expansion of strata—the final shape of the evolution process of structural profile may also deviate from the real state in geological history. The accumulation model established in this study was based upon the fluid inclusion experiments, which can effectively characterize the forming process of large condensate gas reservoirs in the Amu Darya Right Bank Block and quantify the timing of hydrocarbon charging. However, the hydrocarbon migration and accumulation model does not take the oil-source correlation into account, but only the relationship between the mature state of source rocks and the timing of hydrocarbon charging into the reservoirs. Subsequent research needs to conduct refined oil-source correlation to reveal the relationship between gas, condensate, source rocks, and recently discovered crude oil and more strictly constrain and modify the accumulation model, so as to finally disclose the origin of the crude oil and oil reservoir forming process in the Amu Darya Right Bank Block, evaluate the future exploration potential, and point out the direction of various hydrocarbon resources (condensate gas and crude oil).

2020 ◽  
Author(s):  
Qian Ding ◽  
Zhiliang He ◽  
Dongya Zhu

<p>Deep and ultra-deep carbonate reservoir is an important area of petroleum exploration. However, the prerequisite for predicting high quality deep ultra-deep carbonate reservoirs lays on the mechanism of carbonate dissolution/precipitation. It is optimal to perform hydrocarbon generation-dissolution simulation experiments to clarify if burial dissolution could improve the physical properties of carbonate reservoirs, while quantitatively and qualitatively describe the co-evolution process of source rock and carbonate reservoirs in deep layers. In this study, a series of experiments were conducted with the limestone from the Ordovician Yingshan Formation in the Tarim Basin, and the low maturity source rock from Yunnan Luquan, with a self-designed hydrocarbon generation-dissolution simulation equipment. The controlling factors accounted for the alteration of carbonate reservoirs and dissolution modification process by hydrocarbon cracking fluid under deep burial environments were investigated by petrographic and geochemical analytical methods. In the meantime, the transformation mechanism of surrounding rocks in carbonate reservoirs during hydrocarbon generation process of source rock was explored. The results showed that: in the burial stage, organic acid, CO<sub>2</sub> and other acidic fluids associated with thermal evolution of deep source rocks could dissolve carbonate reservoirs, expand pore space, and improve porosity. Dissolution would decrease with the increasing burial depth. Whether the fluid could improve reservoir physical properties largely depends on calcium carbonate saturation, fluid velocity, water/rock ratio, original pore structure etc. This study could further contribute to the prediction of high-quality carbonate reservoirs in deep and ultra-deep layers.</p>


2020 ◽  
Author(s):  
Qi-An Meng ◽  
Xue Wang ◽  
Qiu-Li Huo ◽  
Zhong-Liang Dong ◽  
Zhen Li ◽  
...  

Abstract Re–Os radiometric dating of crude oil can be used to constrain the timing of hydrocarbon generation, migration or charge. This approach has been successfully applied to marine petroleum systems; however, this study reports on its application to lacustrine-sourced natural crude oils. Oil samples from multiple wells producing from the Cretaceous Nantun Formation in the Wuerxun-Beier depression of the Hailar Basin in NE China were analysed. Subsets of the Re–Os data are compatible with a Cretaceous hydrocarbon generation event (131.1 ± 8.4 Ma) occurring within 10 Myr of deposition of the Nantun Formation source rocks. In addition, two younger age trends of 54 ± 12 Ma and 1.28 ± 0.69 Ma can be regressed from the Re–Os data, which may reflect the timing of subsequent hydrocarbon generation events. The Re–Os geochronometer, when combined with complementary age dating techniques, can provide direct temporal constraints on the evolution of petroleum system in a terrestrial basin.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 650 ◽  
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Jinshui Liu ◽  
Wenlong Shen ◽  
Na Li ◽  
...  

The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling approach was used to estimate the mass of petroleum generation and accumulated during the evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance) and borehole temperatures, took into consideration two main periods of erosion events: a late Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of the main source rock formations were reconstructed and show that the peak maturities have been reached in the west central part of the basin. Our study included source rock analysis, measurement of fluid inclusion homogenization temperatures, and basin history modelling to define the source rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon migrated from the deep sag in the south west direction.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1043
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Yang Li ◽  
Zhongqiang Sun

The Changling Depression is the largest and most resource-abundant reservoir in the South Songliao Basin, NE China. The petroleum evolution rules in the Lower Cretaceous deep tight sandstone reservoir are unclear. In this study, 3D basin modeling is performed to analyze the large-scale petroleum stereoscopic migration and accumulation history. The Changling Depression has a complex fault system and multiple tectonic movements. The model is calibrated by the present formation temperatures and observed maturity (vitrinite reflectance). We consider (1) three main erosion episodes during the burial history, one during the Early Cretaceous and two during the Late Cretaceous; (2) the regional heat flow distribution throughout geological history, which was calibrated by abundant measurement data; and (3) a tight sandstone porosity model, which is calibrated by experimental petrophysical parameters. The maturity levels of the Lower Cretaceous source rocks are reconstructed and showed good gas-generation potential. The highest maturity regions are in the southwestern sag and northern sag. The peak hydrocarbon generation period contributed little to the reservoir because of a lack of seal rocks. Homogenization temperature analysis of inclusions indicated two sets of critical moments of gas accumulation. The hydrocarbon filling in the Haerjin and Shuangtuozi structures occurred between 80 Ma and 66 Ma, while the Dalaoyefu and Fulongquan structures experienced long-term hydrocarbon accumulation from 100 Ma to 67 Ma. The homogenization temperatures of the fluid inclusions may indicate a certain stage of reservoir formation and, in combination with the hydrocarbon-accumulation simulation, can distinguish leakage and recharging events.


2020 ◽  
Vol 17 (6) ◽  
pp. 1491-1511
Author(s):  
Jun-Qing Chen ◽  
Xiong-Qi Pang ◽  
Song Wu ◽  
Zhuo-Heng Chen ◽  
Mei-Ling Hu ◽  
...  

AbstractHydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds. Taking the Middle–Upper Ordovician carbonate source rock of Tarim Basin in China as an example, this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance. Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC. Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained. Regular steranes from GC–MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area, indicating that the crude oil probably was migrated from the effective source rocks. By applying to other wells in the basin, the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results, validating the method. Considering the contribution from the identified effective source rocks with low present-day TOC (TOCpd) is considered, the long-standing puzzle between the proved 3P oil reserves and estimated resources in the basin can be reasonably explained.


SPE Journal ◽  
2012 ◽  
Vol 18 (02) ◽  
pp. 366-377 ◽  
Author(s):  
H.. Panahi ◽  
M.. Kobchenko ◽  
F.. Renard ◽  
A.. Mazzini ◽  
J.. Scheibert ◽  
...  

Summary Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature “shale” samples were constructed at resolutions close to 5 μm. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400°C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400°C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-μm range (with 5 μm being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration. Key words in this work include 4D microtomography, 3D image processing, shale, strain field analysis, kerogen, petroleum generation, primary migration, petrography, and thermogravimetry.


2016 ◽  
Vol 35 (1) ◽  
pp. 54-74 ◽  
Author(s):  
Xiaoping Liu ◽  
Zhijun Jin ◽  
Guoping Bai ◽  
Jie Liu ◽  
Ming Guan ◽  
...  

The Proterozoic–Lower Paleozoic marine facies successions are developed in more than 20 basins with low exploration degree in the world. Some large-scale carbonate oil and gas fields have been found in the oldest succession in the Tarim Basin, Ordos Basin, Sichuan Basin, Permian Basin, Williston Basin, Michigan Basin, East Siberia Basin, and the Oman Basin. In order to reveal the hydrocarbon enrichment roles in the oldest succession, basin formation and evolution, hydrocarbon accumulation elements, and processes in the eight major basins are studied comparatively. The Williston Basin and Michigan Basin remained as stable cratonic basins after formation in the early Paleozoic, while the others developed into superimposed basins undergone multistage tectonic movements. The eight basins were mainly carbonate deposits in the Proterozoic–early Paleozoic having different sizes, frequent uplift, and subsidence leading to several regional unconformities. The main source rock is shale with total organic carbon content of generally greater than 1% and type I/II organic matters. Various types of reservoirs, such as karst reservoir, dolomite reservoir, reef-beach body reservoirs are developed. The reservoir spaces are mainly intergranular pore, intercrystalline pore, dissolved pore, and fracture. The reservoirs are highly heterogeneous with physical property changing greatly and consist mainly of gypsum-salt and shale cap rocks. The trap types can be divided into structural, stratigraphic, lithological, and complex types. The oil and gas reservoir types are classified according to trap types where the structural reservoirs are mostly developed. Many sets of source rocks are developed in these basins and experienced multistage hydrocarbon generation and expulsion processes. In different basins, the hydrocarbon accumulation processes are different and can be classified into two types, one is the process through multistage hydrocarbon accumulation with multistage adjustment and the other is the process through early hydrocarbon accumulation and late preservation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qifei Fang ◽  
Qingzhou Yao ◽  
Yongqiang Qu ◽  
Youlu Jiang ◽  
Huizhen Li ◽  
...  

Hydrocarbon migration patterns and pathways were studied on the basis of three-dimensional seismic interpretation, drilling, geochemistry, production performance, and other data. Using these findings, the main factors controlling hydrocarbon migration and accumulation in the Lower Paleozoic carbonate rocks of the Tazhong Uplift were discussed. The spatiotemporal relationship between the hydrocarbon kitchens and pathway systems of the Tazhong Uplift and the spatial pattern of pathway systems were considered the main factors causing differences in hydrocarbon enrichment. Results also revealed that the Lower Paleozoic carbonates of the Tazhong Uplift have two hydrocarbon accumulation systems (inside and outside the source rocks). For the accumulation system within the source rocks, hydrocarbon migration and enrichment are vertically differentiated. Middle Cambrian gypsum salt rocks serve as the boundary, above which thrust and strike-slip faults mainly allow vertical transport of hydrocarbons. A multistage superposition pattern of strike-slip faults controls the differences in hydrocarbon enrichment on the periphery of the fault zone. Beneath the gypsum-salt rocks, hydrocarbon migration and enrichment is controlled by the topography of paleostructures and paleogeomorphology. For the hydrocarbon accumulation system outside the source rocks, hydrocarbon migration and enrichment are restricted by the layered pathway system, and the topography of the paleostructures and paleogeomorphology is the key factor controlling hydrocarbon enrichment. The Tazhong No. 1 Fault is the main vertical pathway system in the area underlain by no source rocks, and hydrocarbons are enriched at the periphery of the Middle-Lower Cambrian and No. 1 Fault Zone.


1994 ◽  
Vol 131 (2) ◽  
pp. 181-190 ◽  
Author(s):  
John Parnell ◽  
Geng Ansong ◽  
Fu Jiamo ◽  
Sheng Guoying

AbstractVeins of solid bitumen occur in Cretaceous sandstones at the northwest margin of the Junggar Basin, China. The bitumen has a low aromaticity and a composition comparable to gilsonite. The bitumen contains abundant steranes and terpanes, and β-carotane, although most n- and i- alkanes have been removed, which is characteristic of the local crude oil. The sterane and triterpane maturity parameters show that the bitumen, local crude oil, and source rocks are all mature. Bitumen–wallrock relationships suggest that the host sandstone was not completely consolidated at the time of emplacement of the bitumen veins, although bitumen emplacement was a relatively late diagenetic event. The burial history for the northwest Junggar Basin shows that hydrocarbon generation from the assumed upper Permian source rocks commenced in late Triassic/early Jurassic times and suggests that rapid hydrocarbon generation may have resulted in overpressure contributing to the bitumen emplacement.


Sign in / Sign up

Export Citation Format

Share Document