Site-Response Analysis Using the Shear-Wave Velocity Profile Correction Approach

Author(s):  
Tessa Williams ◽  
Norman Abrahamson

ABSTRACT The traditional approach used to incorporate site response into the ground-motion hazard analysis is to compute a design spectrum for a rock-site condition and then propagate the rock motion from the base of the soil model to the surface. The main limitation with this approach is that it can be inconsistent with the ground-motion models (GMMs) used to develop the input rock motion. The VS profile implicit in the GMMs is unlikely to match the site-specific VS profile (value and gradient), because the GMMs were developed for ground motions from different VS profiles over large regions and are unlikely to match the profile of any one site well. This article presents the VS profile correction method for developing surface ground motions as an alternative to the soil-over-rock approach routinely used in earthquake engineering practice. This approach is similar to the standard soil-over-rock analysis, but uses different input motions and involves performing two site response analyses—one for the generic profile associated with the GMM(s) and one for the site-specific profile—then applying the ratio of the two site response analysis results to correct the design spectrum for the reference site condition developed using the GMMs. Two example applications are included to illustrate the VS profile correction methodology as well as some of the challenges that may arise when doing so.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ngoc-Long Tran ◽  
Muhammad Aaqib ◽  
Ba-Phu Nguyen ◽  
Duy-Duan Nguyen ◽  
Viet-Linh Tran ◽  
...  

This study presents a case study on ground response analysis of one of the important cultural heritages in Hanoi, Vietnam. One-dimensional nonlinear and equivalent linear site response analyses which are commonly applied to solve the problem of seismic stress wave propagation are performed at the Ba Dinh square area. A measured in-situ shear wave velocity profile and corresponding geotechnical site investigation and laboratory test data are utilized to develop the site model for site-specific ground response analysis. A suite of earthquake records compatible with Vietnamese Design Code TCVN 9386: 2012 rock design spectrum is used as input ground motions at the bedrock. A few concerns associated with site-specific ground response evaluation are analyzed for both nonlinear and equivalent linear procedures, including shear strains, mobilized shear strength, and peak ground acceleration along with the depth. The results show that the mean maximum shear strains at any soil layer are less than 0.2% in the study area. A deamplification portion within the soil profile is observed at the layer interface with shear wave velocity reversal. The maximum peak ground acceleration (PGA) at the surface is about 0.2 g for equivalent linear analysis and 0.16 g for nonlinear analysis. The ground motions are amplified near the site natural period 0.72 s. The soil factors calculated in this study are 1.95 and 2.07 for nonlinear and equivalent linear analyses, respectively. These values are much different from the current value of 1.15 for site class C in TCVN 9386: 2012. A comparison of calculated response spectra and amplification factors with the local standard code of practice revealed significant discrepancies. It is demonstrated that the TCVN 9386: 2012 soil design spectrum is unable to capture the calculated site amplification in the study area.


2020 ◽  
Vol 36 (2) ◽  
pp. 856-879 ◽  
Author(s):  
Christopher A de la Torre ◽  
Brendon A Bradley ◽  
Robin L Lee

This study examines the performance of nonlinear total stress one-dimensional (1D) wave propagation site response analysis for modeling site effects in physics-based ground motion simulations of the 2010–2011 Canterbury, New Zealand earthquake sequence. This approach explicitly models three-dimensional (3D) ground motion phenomena at the regional scale, and detailed site effects at the local scale. The approach is compared with a more commonly used empirical VS30-based method of computing site amplification for simulated ground motions, as well as prediction via an empirical ground motion model. Site-specific ground response analysis is performed at 20 strong motion stations in Christchurch for 11 earthquakes with 4.7≤ MW≤7.1. When compared with the VS30-based approach, the wave propagation analysis reduces both overall model bias and uncertainty in site-to-site residuals at the fundamental period, and significantly reduces systematic residuals for soft or “atypical” sites that exhibit strong site amplification. The comparable performance in ground motion prediction between the physics-based simulation method and empirical ground motion models suggests the former is a viable approach for generating site-specific ground motions for geotechnical and structural response history analyses.


2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2020 ◽  
Vol 12 (13) ◽  
pp. 5273 ◽  
Author(s):  
Karma Tempa ◽  
Raju Sarkar ◽  
Abhirup Dikshit ◽  
Biswajeet Pradhan ◽  
Armando Lucio Simonelli ◽  
...  

Earthquakes, when it comes to natural calamities, are characteristically devastating and pose serious threats to buildings in urban areas. Out of multiple seismic regions in the Himalayas, Bhutan Himalaya is one that reigns prominent. Bhutan has seen several moderate-sized earthquakes in the past century and various recent works show that a major earthquake like the 2015 Nepal earthquake is impending. The southwestern city of Bhutan, Phuentsholing is one of the most populated regions in the country and the present study aims to explore the area using geophysical methods (Multispectral Analysis of Surface Waves (MASW)) for understanding possibilities pertaining to infrastructural development. The work involved a geophysical study on eight different sites in the study region which fall under the local area plan of Phuentsholing City. The geophysical study helps to discern shear wave velocity which indicates the soil profile of a region along with possible seismic hazard during an earthquake event, essential for understanding the withstanding power of the infrastructure foundation. The acquired shear wave velocity by MASW indicates visco-elastic soil profile down to a depth of 22.2 m, and it ranged from 350 to 600 m/s. A site response analysis to understand the correlation of bedrock rigidness to the corresponding depth was conducted using EERA (Equivalent-linear Earthquake Site Response Analysis) software. The amplification factors are presented for each site and maximum amplification factors are highlighted. These results have led to a clear indication of how the bedrock characteristics influence the surface ground motion parameters for the corresponding structure period. The results infer that the future constructional activity in the city should not be limited to two- to five-story buildings as per present practice. Apart from it, a parametric study was initiated to uncover whatever effects rigid bedrock has upon hazard parameters for various depths of soil profile up to 30 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m and 200 m from the ground surface. The overriding purpose of doing said parametric study is centered upon helping the stack holders who can use the data for future development. Such a study is the first of its kind for the Bhutan region, which suffers from the unavailability of national seismic code, and this is a preliminary step towards achieving it.


Sign in / Sign up

Export Citation Format

Share Document