Assessment of Microstructure and Mechanical Properties of As-cast Magnesium Alloys Reinforced with Organically Extracted Zinc and Calcium

2022 ◽  
pp. 45-55
2009 ◽  
Vol 610-613 ◽  
pp. 826-830
Author(s):  
Tian Mo Liu ◽  
Wei Hui Hu ◽  
Qing Liu

The microstructures and mechanical properties of cold upsetting magnesium alloys were investigated upon anneal under different conditions. The results show that a large amount of twins were observed in the original grains of cold upsetting AZ31 magnesium alloys. The twins disappeared gradually and recrystal grains formed after anneal. The volume fraction of the recrystal grains increases as the strain of samples rises. Recrystal grain size grows large with the elevated annealing temperature. Recrystal grain size reduces at first and then grows as the annealing time is prolonged. In addition, compared with as-cast magnesium alloys, the yield strength of cold upsetting samples increase apparently due to grain refinement after anneals.


This paper reviews the outcome of bismuth and antimony trappings on the microstructure and mechanical behavior of an assortment of commercial magnesium alloys. Various compositions of the Bi and Sb were discussed along with/without combination of other alloying elements. These additions have revealed to be resulted in the formation of Mg3Bi2 , Mg3Sb2 intermediate phases when added upon with corresponding alloying elements. Moreover the reasons for the observed changes due to the addition of these alloying elements were also reviewed. It is found that the accumulation of Bi phase as well as intermetallics and Sb intermediates has greatly improved the microstructure belonging to the as cast magnesium alloys thereby improving both mechanical and thermo-mechanical properties. It is also observed in the review that addition of thesealloying elements acted as grain refiner and improved the corrosion resistance of commercial magnesium alloys.


2010 ◽  
Vol 97-101 ◽  
pp. 801-804
Author(s):  
Jing Yuan Li ◽  
Xiao Lei Du

Two groups of magnesium alloys with various Al and Zn components are studied in this paper. One group of alloys are constant Al content of about 6% and various Zn content from 0 to 3%, another group are constant Zn content of about 0.4% and various Al content from 0 to 6%. The microstructures and mechanical properties of these alloys are investigated in as-cast and homogenized at 380°C for 15h. The results show that the tensile strength increases but yield strength decreases after homogenizing treatment. It can also be found that the morphology of second phrase and the size of grain exert the more effect on the mechanical properties than Zn content does. The alloys with uniform, fine and non-dendrite microstructure exhibit both high strength and elongation regardless of Zn content. On the other hand, the tensile strength and yield strength elevate significantly as Al content increases, and the elongation has a peak value in Al content of about 1.90%. The results show that the as-cast magnesium alloys with Al content of 5.6~6.0% and Zn content of 0.6~1.0% exhibit the best comprehensive mechanical properties.


2001 ◽  
Vol 16 (2) ◽  
pp. 126-132 ◽  
Author(s):  
E.M. Gutman ◽  
Ya.B. Unigovski ◽  
A. Eliczer ◽  
E. Abramov ◽  
E. Aghion

2013 ◽  
Vol 27 (19) ◽  
pp. 1341023
Author(s):  
HAIBO HOU ◽  
TIANPING ZHU ◽  
YUXIN WANG ◽  
WEI GAO

Much attention has been paid to Mg alloys given that Mg alloys are the most promising lightweight metallic material. They have found applications in automobile and other fields where weight saving is of great significance. Mg – Al – Zn alloy system (AZ series), including AZ91 and AZ61 Mg alloys, is widely used in industry. We have studied the enhancement of mechanical properties by adding alloying elements Sn and Pb . This paper reports our study on the microstructure and element distribution of the alloys with small amounts of tin ( Sn ) and lead ( Pb ) additions.


2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


Sign in / Sign up

Export Citation Format

Share Document