Development and mastering of technologies of production at PJSC MMK a new generation steel rolled stock for m a in pipelines

Author(s):  
P. V. Shilyaev ◽  
S. V. Denisov ◽  
P. A. Stekanov ◽  
O. V. Sych ◽  
E. I. Khlusova ◽  
...  

In view of arising needs of Russian oil and gas sectors, elaboration and implementation into series production competi­tive pipe products became an actual task for domestic enterprises of metallurgical industry. Generalized results of elaboration of chemical compositions and automated technologies of sheet rolled stock of new generation production from low-alloyed pipe steels of various strength classes at PJSC MMK presented. It was shown that the selected chemical compositions ensure forming finedispersed ferrite-bainite structure with bainite of granular morphology in a wide range of cooling rates. The elaborated technological modes of sheet rolled stock production from pipe steels stipulate for elimination considerable growth of austenite grain at heating before the rolling, refinement of austenite grains due to recrystallization processes, forming of extensive subgrain structure of austenite at plastic deformation, forming disperse structures during phase transformation in the process of controlled accelerated cooling; forming of extensive fragmented structure in а-phase. The level of strength, tough-plastic properties and resistance against brittle destruction (based on results of tests with a falling weight with determination of tough component share in the break of full-thickness samples) of sheet rolled stock of pipe steels with various chemical composition of PJSC MMK production was demonstrated. Results of study of tests the sheet rolled stock of high-strength steels for pipes of large diameter presented. Objects of the elaborated pipe steels implementation indicated.

2013 ◽  
Vol 66 (2) ◽  
pp. 201-208
Author(s):  
Celso Antonio Barbosa ◽  
Alexandre Sokolowski

Nowadays super-duplex stainless is an important material for the Oil and Gas industries, especially for off-shore production. In deep water exploitation the reliability of production system is very important. Corrosion resistance for pitting of the high alloyed duplex stainless steels with high Mo and N content has to be achieved even in large diameters bars. Therefore, the present work deals with an improved super-duplex stainless steel for the production of large diameter rolled 6bars up to 152.40 mm (6 inches). Among the main improvements, the corrosion resistance evaluated both by the chemical method according to the ASTM G-48 method, as well as electrochemical methods, was achieved. During the production of such large dimensions, the precipitation of inter-metallics and nitrides after cooling from high temperatures was studied by changing the chemical composition using Thermo-Calc and evaluating the new proposed chemical compositions. Several alloy compositions were laboratory scale cast, and the austenite/ferrite balance as well as PREN pitting resistance equivalent number content was correlated to the microstructure and the corrosion properties obtained. It was thus possible to determine the ideal chemical composition and define the new processing parameters to produce the UNS S32760 grade (4501) according to the Norsok standard. The new material properties produced in a production full scale heat are also presented.


Author(s):  
A. A. Pridein ◽  
S. P. Zubov ◽  
L. V. Prokopenko ◽  
E. L. Bazaev ◽  
D. V. Nizhel’skii ◽  
...  

A technology of К60-D strength class sheet rolled stock production at 2800 mill of JSC “Ural Steel” elaborated and implemented, by application of thermomechanical rolling followed by accelerated cooling. It was shown that the implemented technology provides the required complex of mechanical properties and high resistance of the rolling stock within a wide dimensional range. The thickness of the rolling stock, produced for trunk pipelines and field oil and gas pipelines, gas-collecting nets pipelines and natural gas liquefaction plants as well as pipelines details was 21.2; 28.5 and up to 45 mm correspondently. Complete meeting the properties of the К60-D strength class sheet rolled stock, produced by the elaborated technology, the requirements to the materials for two-seamed 1420 mm diameter pipes of D category was confirmed by results of tests.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3357
Author(s):  
Péter Nagy ◽  
Nadia Rohbeck ◽  
Zoltán Hegedűs ◽  
Johann Michler ◽  
László Pethö ◽  
...  

A nanocrystalline Co-Cr-Ni-Fe compositional complex alloy (CCA) film with a thickness of about 1 micron was produced by a multiple-beam-sputtering physical vapor deposition (PVD) technique. The main advantage of this novel method is that it does not require alloy targets, but rather uses commercially pure metal sources. Another benefit of the application of this technique is that it produces compositional gradient samples on a disk surface with a wide range of elemental concentrations, enabling combinatorial analysis of CCA films. In this study, the variation of the phase composition, the microstructure (crystallite size and defect density), and the mechanical performance (hardness and elastic modulus) as a function of the chemical composition was studied in a combinatorial Co-Cr-Ni-Fe thin film sample that was produced on a surface of a disk with a diameter of about 10 cm. The spatial variation of the crystallite size and the density of lattice defects (e.g., dislocations and twin faults) were investigated by X-ray diffraction line profile analysis performed on the patterns taken by synchrotron radiation. The hardness and the elastic modulus were measured by the nanoindentation technique. It was found that a single-phase face-centered cubic (fcc) structure was formed for a wide range of chemical compositions. The microstructure was nanocrystalline with a crystallite size of 10–27 nm and contained a high lattice defect density. The hardness and the elastic modulus values measured for very different compositions were in the ranges of 8.4–11.8 and 182–239 GPa, respectively.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


In 1980 it was only possible to express foreign genes in bacteria and a few easily cultured animal cells. During the subsequent eight years specialized vectors have been developed to allow the genetic manipulation of a wide range of both prokaryotes and eukaryotes. One of the major goals of biotechnology in 1980 was to use host cells as ‘factories’ for the production of proteins that were only available in minute quantities from natural sources. This has already lead to a new generation of pharmaceutical products. Advances in our understanding of host-vector systems have defined new goals. The basic concepts of expression vector design will be illustrated. Some of the new goals are discussed with particular reference to the exploitation of novel host-vector systems to develop vaccines and anti-viral agents against AIDS.


Author(s):  
J. M. Gray ◽  
S. V. Subramanian

A quantitative understanding of hierarchical evolution of microstructure is essential in order to design the base chemistry and optimize rolling schedules to obtain the morphological microstructure coupled with high density and dispersion of crystallographic high angle boundaries to achieve the target strength and fracture properties in higher grade line pipe steels, microalloyed with niobium. Product-process integration has been the key concept underlying the development of niobium microalloyed line pipe steel technology over the years. The development of HTP technology based on 0.1 wt % Nb and low interstitial was predicated by advances in process metallurgy to control interstitial elements to low levels (C <0.03wt% and N< 0.003wt%), sulfur to ultra-low levels (S<20ppm), as well as in product metallurgy based on advances in basic science aspects of thermo-mechanical rolling and phase transformation of pancaked austenite under accelerated cooling conditions, and toughness properties of heat affected zones in welding of niobium microalloyed line pipes. A historical perspective/technological overview of evolution of HTP for line pipe applications is the focus of this paper in order to highlight the key metallurgical concepts underlying Nb microalloying technology which have paved the way for successful development of higher grade line pipe steels over the years.


2000 ◽  
Vol 36 (2) ◽  
pp. 93-96
Author(s):  
O. P. Lykov ◽  
S. A. Nizova ◽  
S. P. Valueva ◽  
M. A. Silin ◽  
E. E. Yanchenko

1994 ◽  
Vol 29 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M Raoof ◽  
I Kraincanic

Using theoretical parametric studies covering a wide range of cable (and wire) diameters and lay angles, the range of validity of various approaches used for analysing helical cables are critically examined. Numerical results strongly suggest that for multi-layered steel strands with small wire/cable diameter ratios, the bending and torsional stiffnesses of the individual wires may safely be ignored when calculating the 2 × 2 matrix for strand axial/torsional stiffnesses. However, such bending and torsional wire stiffnesses are shown to be first order parameters in analysing the overall axial and torsional stiffnesses of, say, seven wire stands, especially under free-fixed end conditions with respect to torsional movements. Interwire contact deformations are shown to be of great importance in evaluating the axial and torsional stiffnesses of large diameter multi-layered steel strands. Their importance diminishes as the number of wires associated with smaller diameter cables decreases. Using a modified version of a previously reported theoretical model for analysing multilayered instrumentation cables, the importance of allowing for the influence of contact deformations in compliant layers on cable overall characteristics such as axial or torsional stiffnesses is demonstrated by theoretical numerical results. In particular, non-Hertzian contact formulations are used to obtain the interlayer compliances in instrumentation cables in preference to a previously reported model employing Hertzian theory with its associated limitations.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


Sign in / Sign up

Export Citation Format

Share Document